

Vol 1
	

No 2

BASIC PROGRAMMING 3

THE COMPUTER AS DECISION-MAKER
	

33

How IF ... THEN is used. Three-way and
multiple choices

MACHINE CODE 2

10-MINUTE GAMES GRAPHICS

Binary/decimal and binary/hex conversions.

Planning graphics

APPLICATIONS
Immossummeir

STREAMLINE YOUR HOBBIES FILES: 1 ilL"....146

A datafile program to index — or cross-

index — your hobbies

GAMES PROGRAMMING 2

RIGHT... UP... LEFT... FIRE!
	

54

Using GET$ and INKEY$ to get your games
programs moving

BASIC PROGRAMMING 4
MIP MEP

THE PROGRAMMER'S ROAD SIGNS

How to jump lines using GOTO, ON...GOTO
and GOSUB

INDEX
The last part of INPUT, Part 52, will contain a complete, cross - referenced index.
For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover: Pete Seaward Pages 34, 37, Chen Ling Pages 38, 45, Phil
Dobson Pages 46-53, Pete Seaward Pages 54-59, Dick Ward Pages 60-63,
Andrew MacConville

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.45)
each binder to the address below:

Marshall Cavendish Services L
Department 980, Newtown Ro
Hove, Sussex BN3 7DN

Australia: See inserts for details.
write to INPUT, Gordon and Go
Ltd, PO Box 213, Alexandria, N
2015
New Zealand: See inserts for deta
or write to INPUT, Gordon and Goi
(NZ) Ltd, PO Box 1595, Wellingi = Malta: Binders are available fr

local newsagents.

'here are four binders each holding 13 issues.

BACK NUMBERS
Copies of any part of INPUT can be obtained from the following addresses at the
regular cover price, with no extra charge for postage and packing:
UK and Republic of Ireland:

INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent

COPIES BY POST
Our Subscription Department can supply your copies direct to you regularly at £1.00
each. For example the cost of 26 issues is £26.00; for any other quantity simply
multiply the number of issues required by £1.00. These rates apply anywhere in the
world. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
or binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR 2X81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and + 	COMMODORE 64 and 128

la ACORN ELECTRON,
BBC B and B+ = DRAGON 32 and 64

TANDY TRS110
DI81 	VIC 20 T COLOUR COMPUTER

■ CHOOSING THE WAY TO GO
■ WORKING OUT AVERAGES
■ MORE COMPLICATED

DECISIONS
■ A FRUIT MACHINE GAME
■ USING IF ... THEN ... ELSE

Brainless though it might be, your
computer can still make logical
decisions—if you program it the
right way. Here's how to use IF ...
THEN to turn your computer into
a decision-maker.

One of the things that makes a computer
superior to an ordinary calculator is its ability
to make decisions.

This useful feature allows a program to
branch off in different directions—and hence
to carry out different instructions—
depending on the outcome of a particular test.

One of the ways the computer does this is
by means of the IFTHEN statement. It acts
on such a statement in much the same way
that a human being would do: IF so-and-so is
true, THEN it will do such-and-such.

One example of this statement has been
seen on page 3. Another example is:

IF A <18 (in other words, if A is less
than 18) THEN PRINT "underage"

When the computer meets the keyword IF, it
checks whether the next statement is true. If it
is, the computer carries on and does whatever
comes after the word THEN. If, on the other
hand, it is not true, the computer ignores that
line and goes on to the next line of the
program instead.

JUST ABOUT AVERAGE
You can see how it works in this next program
which works out the average of a list of marks:

On the ZX81, omit :STOP in Line 40 and add
45 IF N= —99 THEN GOTO 80
80 STOP
10 PRINT "ENTER LIST OF MARKS"
20 PRINT "TYPE —99 TO END THE LIST"
25 LET T=0
26 LET C= 0
30 INPUT N
40 IF N= —99 THEN PRINT "AVERAGE

MARK = ";T/C: STOP
50 LET T = T + N
60 LET C=C+1
70 GOTO 30

1111-1 letiw
10 PRINT "ENTER LIST OF MARKS"
20 PRINT "TYPE —99 TO END THE LIST"
30 INPUT N
40 IF N= —99 THEN PRINT "AVERAGE

MARK= ";T/C: END
50 LET T= T+ N
60 LET C=C+1
70 GOTO 30

The instructions tell you to type in a list
marks and then to type — 99 to end the lis
You'll see the reason for this in a momen
Lines 25 and 26 (necessary only on th
Spectrum) set the initial values of the tou
and the counter to zero. Line 30 takes th
number that you type in, Line 50 adds it t
the running total and Line 60 keeps track (
how many numbers you have entered—b
adding 1 for each mark that is input.

As long as you type in real marks, th
computer will ignore Line 40 and will go bac
to Line 30 for another number. But when yo
type — 99 the condition in Line 4(
N = — 99, is true, so the computer prints of
the average mark (T/C, or total divided b
count) and the program ends.

Numbers like — 99 are called dummy c
terminating numbers and they are a useful wa
of controlling what happens in a program.

THREE-WAY CHOICE
What if you want to choose between three or
more alternatives in order to send the com-
puter on different courses of action? This is
just as easy as choosing between two as you
can see in this elaboration of the guessing
game in the earlier article on page 3:

10 LET N=RND(20)
7_0 PRINT "I'VE JUST THOUGHT OF A

NUMBER"
30 PRINT "... CAN YOU GUESS WHAT IT

IS?"
10 INPUT G
50 IF G = N THEN PRINT "CORRECT, WELL

DONE" : FOR D=1 TO 2000: NEXT D:
GOTO 10

30 IF G < N THEN PRINT " TOO LOW, TRY
AGAIN"

70 IF G> N THEN PRINT " TOO HIGH, TRY
AGAIN"

30 GOTO 40

5 CLS
10 LET N = INT (RND*20) +1
7_0 PRINT "I'VE JUST THOUGHT OF A

NUMBER"

30 PRINT "... CAN YOU GUESS WHAT IT
IS?"

40 INPUT G
50 IF G= N THEN PRINT "CORRECT, WELL

DONE": PAUSE 100: GOTO 10
60 IF G <N THEN PRINT "TOO LOW, TRY

AGAIN"
70 IF G> N THEN PRINT "TOO HIGH, TRY

AGAIN"
RG1 nnrn

5 PRINT " "

10 LET N= INT(RND(1) . 20 +1)
20 PRINT "I'VE JUST THOUGHT OF A

NUMBER"
30 PRINT ".... CAN YOU GUESS WHAT IT

IS?' ,

40 INPUT G
50 IF G=N THEN PRINT "CORRECT, WELL

DONE!":FOR D=1 TO 1000:NEXT D:
GOTO 5

60 IF G< N THEN PRINT "TOO LOW, TRY
AGAIN"

70 IF G> N THEN PRINT "TOO HIGH, TRY
AGAIN"

80 GOTO 40

Line 10 chooses a random number between 1
and 20, then Lines 20 to 40 ask you to guess
what it was. Whatever you guess, the com-

puter will check through Lines 50, 60 and 70
looking for a condition that is true.

Suppose, for example, your guess is too
low. In this case the computer will look at
Line 50 but as G = N is false it ignores that line
and goes to Line 60. Here the condition is
true, since G is less than N. So it prints out the
message 'TOO LOW, TRY AGAIN'. It then
naturally goes on to the next line but this
condition is false so it ignores the line and
goes to Line 80. Line 80 simply takes you
back for another guess.

What if your guess was too high, or just
right? Study the program until you follow
exactly what is going on.

This program works very well but it has
one disadvantage—it keeps on asking you to
guess a number whether you want to keep
playing or not. A better way would be to get
the computer to ask if you wanted another go.

The next few lines do just that. Again they
use IF ... THEN and in this case the computer
is comparing letters rather than numbers to
see if they are the same.

7■■

Problems with operators?
If you are not used to the 'greater than'
and 'less than' symbols—the operators—
you may find them confusing at first.

So think of them as wedges. In >, the
first, wide, end is greater than the pointed
end. In <, the first, narrow, end is less
than the wider end. So A> B reads 'A is
greater than B'. Adding = just means A
can also be equal to B.

Here is a full list of all the different
combinations:
A= B: A equals B
A> B: A greater than B
A < B: A less than B
A> = B: A greater than or equal to B
A < = B: A less than or equal to B
A < > B: A not equal to B

On Acorn computers, you must type
in the operators in the order shown. If,
for example, you typed A= <B, the
computer would not understand your
meaning and would report an error.

On the Spectrum and ZX81, com-
posite operators—like < =, for
example—must be entered from a single
key. If you tried entering < followed by
=, the line would not be accepted.

II
100 PRINT "DO YOU WANT ANOTHER GO?

(YIN)"
110 LET A$= GET$
120 IF A$="Y" THEN RUN
130 END

1)A
100 PRINT "DO YOU WANT ANOTHER

GO?(Y/N)"
110 LET A$ =1NKEY$: IF A$ = "" THEN

GOTO 110
120 IF A$="Y" THEN RUN

100 PRINT "DO YOU WANT ANOTHER GO?
(Y/N)"

110 GET A$: IF A$=" THEN 110
120 IF A$ ="Y" THEN RUN
130 END

If you want to use these extra lines, you must
also change Line 50 of the last program to:

50 IF G= N THEN PRINT "CORRECT. WELL
DONE": GOTO 100

Here, Line 110 waits for you to press a key. If
capital Y is pressed the program will automati-
cally RUN, but if any other key (including
lower-case y!) is pressed it will stop.

These lines are very handy to add to the
end of any games or quiz program to give a
neat way out.

DOUBLE CHECKING
Sometimes you want the computer to test
whether two or more conditions are true
before deciding which way to go. One way it
can do this is to use special keywords or
symbols called operators. Look at this
program line:

100 IF D$="SATURDAY" AND T=1745
THEN PRINT "ITS TIME FOR DR WHO"

When you use the keyword AND between two
conditions then both conditions have to be
true for the computer to carry on and do the
rest of the line; otherwise it goes on to the next
line in the program. In this example, it has to
be Saturday AND the time has to be 1745
before the computer will print out the
appropriate message.

Another example is:

200 IF P$="SAGO"OR P$=
"TAPIOCA" THEN PRINT "I'M NOT
HUNGRY TODAY"

This line uses the keyword OR and the
computer PRINT s out the sentence as long as
at least one condition is true.

To save program space, can I
combine two or more IF ...
THEN statements into one line?
Usually, this is a bad idea. The principle
on which IF ... THEN works in BASIC n
that, if the condition set out in the line
is true, then the computer will execute
that part of the line that comes after the
THEN. But if the condition is not true,
the computer ignores the rest of the line
So in this line:

70 IF X=Y THEN PRINT "OUT OF TIME":
LET lives = lives —1: GOTO 30

no .instructions after the letter Y will
be carried out unless X does equal Y.

Sometimes, though, compound IF ...
THENs are useful. In these lines:

70 IF X=Y THEN PRINT "OUT OF TIME":
IF lives > 0 THEN LET lives=
lives —1

80 IF X=Y AND lives= 0 THEN PRINT
"Game over"

the player will lose a life only if he has
one left. But because of the way Line
70 is structured, the 'out of time'
warning will be PRINTed
regardless.

The test can get very complicated if there
are a lot of conditions to check. If you have
several ANDS and ORs together in one line
then you should use brackets so the computer
knows which to check first.

For example, a line in an adventure game
may look like this:

2000 IF P=14 AND (C$="SWORD" OR
C$ = "KNIFE") THEN PRINT "YOU'VE
KILLED THE GREMLIN"

This condition is only true—and you get to
kill the gremlin—if you are at position 14 AND
you are carrying either a sword OR a knife.
But try changing the brackets to this:

2000 IF (P=14 AND C$="SWORD") OR
C$ = "KNIFE" THEN PRINT "YOU'VE
KILLED THE GREMLIN"

This is true if you are at position 14 with a
sword, OR you are anywhere and just carrying
a knife—which is not the same thing at all.

Brackets are essential to make the com-
puter do exactly what you want if certain
priorities have to be observed.

WINNING THE JACKPOT
Here is a program to play a fruit machin
game which makes good use of AND and OF
See if you can win the jackpot:

20 LET M=50
30 CLS
40 LET M= M-5
50 IF M <0 THEN PRINT "SORRY, YOU'RE

BROKE": STOP
60 LET A= INT (RND*12) + 130
70 LET B= INT (RND*12) +130
80 LET C= INT (RND*12) +130
210 PRINT PAPER 0; INK 4;AT 10,14;CHR$

A;AT 10,16;CHR$ B;AT 10,18;CHR$ C
220 IF A= B AND B=C THEN PRINT AT

13,2;"YOU'VE HIT THE JACKPOT....
50": LET M= M +50

230 IF (A= B OR B=C) AND A< >C THEN
PRINT AT 13,9;"YOU'VE WON $10": LET
M=M+10

240 PAUSE 25
250 PRINT AT 15,8;"ANOTHER GO? (yin)":

PRINT TAB 10;"YOU HAVE $";M
260 IF 1NKEY$= "" THEN GOTO 260
270 IF 1NKEY$ ="n" THEN STOP
280 GOTO 30

Why do I keep getting error
reports when I RUN typed-in
programs?
There may be bugs in the programs
themselves—but a far more common
cause is simple typing errors which
often creep in when you are copying.
Here are some common ones:
• Confusing capital I or lower-case 1
with the numeral 1
• Confusing capital 0 with numeral 0
• Omitting the quotation marks at the
end of a PRINT statement
• In a DATA statement, omitting the
comma between two numbers (this may
well produce a number too big for the
computer to accept)
• Omitting a minus sign (in any
program which generates graphics, this
is likely to tell the computer to print
something 'out of screen')
• Omitting the semi-colon at the end of
a line (this will create havoc 	/
with your screen display)

20 LET M=50
30 CLS
40 LET M = M-5
50 IF M <0 THEN PRINT "SORRY, YOU'RE

BROKE":END
50 LET A= RND(12)+192
70 LET B=RND(12)+192
30 LET C=RND(12)+192
210 PRINT@ 237,CHR$(A):PRINT@
239,CHR$(B):PRINT@ 241,CHR$(C)
220 IF A= B AND B=C THEN PRINT@258,

"YOU'VE HIT THE JACKPOT....$50":
LET M=M+50

230 IF (A=B OR B=C) AND A< >C THEN
PRINT@ 265,"YOU'VE WON $10":LET
M=M+10

240 FOR D=1 TO 500:NEXT
250 PRINT@ 327,"ANOTHER GO? (Y/N)":

PRINT@ 361,"YOU HAVE $";M
260 LET K$=INKEY$:IF K$="" THEN GOTO

260
270 IF K$="Y" THEN GOTO 30
280 END

20 LET M = 50
30 CLS
10 LET M = M-5
50 IF M <0 THEN PRINT "SORRY, YOU'RE

BROKE":END
30 LET A= RND(12) +224 (32 for Electron)
70 LET B= RND(12) +224 (32 for Electron)
30 LET C= RND(12) + 224 (32 for Electron)
210 PRINT TAB(17,10);CHR$147;CHR$A;

" ❑ ";CHR$B;" ❑ ";CHR$C
220 IF A= B AND B=C THEN PRINT

TAB(7,12) "YOU'VE HIT THE
JACKPOT....$50": LET M= M + 50

230 IF (A=B OR B=C) AND A< >C THEN
PRINT TAB(14,12) "YOU'VE WON $10":
LET M=M+10

!40 FOR D=1 TO 1500: NEXT
150 PRINT TAB(13,16) "ANOTHER GO?

(Y/N)";TAB(15,17) "YOU HAVE $";M
!60 LET K$ = GET$
!70 IF K$="Y" THEN GOTO 30
!80 END

)n the Vic, change Line 10 to 10 POKE
16879,8. Change TAB(15) in Line 210 tc
'AB(3). Omit TAB(5) in Line 220, and change
'AB(13) in Line 230 to TAB(4).

0 POKE 53280,0: POKE 53281,0:PRINT
CHR$(30)

0 LET M =50
0 PRINT "a"
.0 LET M=M-5

Using REPEAT ... UNTIL
Acorn computers have two extra state-
ments called REPEAT ... UNTIL whict
you can often use in place of IF ... THEN

GOTO. This is useful when you wane
to repeat a section of program over anc
over again, only stopping when a certair
condition is true. In a games progran -
this might be when you have run out o1
bombs, for instance.

Using IF ... THEN, the program can be
written like this:

50 (main program starts here)
200 IF bombs= 0 THEN PRINT "You've

lost" :END
210 GOTO 50

And with REPEAT ... UNTIL, it looks like
this:

45 REPEAT
50 (main program starts here)
200 UNTIL bombs= 0
210 PRINT "You've lost" :END

The two versions are equivalent, but the
second is easier to use. In general,
faster and the whole program is better
structured.

50 IF M <0 THEN PRINT "SORRY YOU'RE
BROKE": END

60 LET A= INT(RND(1)*4) +1
70 LET B= INT(RND(1)*4) +1
80 LET C= INT(RND(1)*4) +1
90 IF A=1 THEN LET A=97
100 IF A=2 THEN LET A=115
110 IF A=3 THEN LET A=120
120 IF A=4 THEN LET A=122
130 IF B=1 THEN LET B=97
140 IF B=2 THEN LET B=115
150 IF B=3 THEN LET B=120
160 IF B=4 THEN LET B=122
170 IF C=1 THEN LET C=97
180 IF C=2 THEN LET C=115
190 IF C=3 THEN LET C=120
200 IF C=4 THEN LET C=122
210 PRINT "ogggigiggggg

gggigggggg"TAB(15)CHR$(A)
SPC(3)CHR$(B)SPC(3)CHR$(C)

220 IF A= B AND B=C THEN PRINT
TAB(5)"gggg gg ggYOU'VE HIT THE
JACKPOT....$50":LET M = M + 50

230 IF (A= B OR B=C) AND A< >C THEP

PRINT TAB(13) "gg gg gg gg YOU'VE WO
$10":LET M = M +10

240 FOR D =1T01500:NEXT
250 PRINT "gg gg giANOTHER GO?

(Y/N)...YOU HAVE $";M;"LEFT"
260 GET K$:IF K$ < > "Y" AND K$ < > "N'

THEN GOTO 260
270 IF K$ = "Y" THEN GOTO 30
280 END

This program uses several IF ... THEN line
The first one in Line 50 simply checks to sc
if you have enough money to play. If you do
ignores the line, but if you don't it PRINTs of
a message and ends the game.

Lines 60 to 80 choose three random nurr
bers and Line 210 converts these number
into characters and PRINTs them out at tk
centre of the screen.

The Sinclair, Dragon, Tandy and Acor
machines convert these numbers straigl
into characters. The Commodore need
twelve extra lines to convert each randor
number from 1 to 4 into the code for one c
the four suits—hearts, clubs, diamonds an
spades—conveniently available as part of th:
machine's ROM graphics. Line 210 the
PRINTs these out on the screen.

At Line 220, if all three characters are th
same you win the jackpot and your money i
increased by $50. At Line 230 you win $10 I
two adjacent characters are the same (eithe
A= B or B = C will do), but you don't win :
only the outer characters are the same.

If you don't have a winning line then th
computer ignores Lines 220 and 230 and goe
on to Line 240. This line causes a slight dela}
then the next few lines are another version c
the Yes/No routine which asks you if yo
want another go.

IF ... THEN ... ELSE
On some computers (but not the Spectrurr
ZX81, Commodore 64 or Vic 20) you can writ
IF ... THEN ... ELSE. Here's an example:

10 INPUT AGE
20 IF AGE <18 THEN PRINT "UNDERAGE"

ELSE PRINT "ELIGIBLE"

This does exactly what it says—if you ar
under 18 years old the computer will prir
"UNDERAGE", but if you are 18 or over it wi
print "ELIGIBLE".

IF ... THEN ... ELSE is useful as it makes th
program easier to write and understand. It i
more like an ordinary sentence.

But it is not essential, and you can writ
programs without it if your computer just ha
IF ... THEN. In fact, there are two ways roun ,

 the problem. The first uses IF ... THEN fol
lowed by GOTO to jump to the correct part c
the program—makine the last orozram:

10 INPUT AGE
20 IF AGE< 18 THEN PRINT

"UNDERAGE": GOTO 30
25 PRINT "ELIGIBLE"
30 ... rest of program

The second method uses an extra IF ... THEN
statement to make sure every possible con-
dition is covered:

10 INPUT AGE
20 IF AGE <18 THEN PRINT "UNDERAGE"
25 IF AGE > =18 THEN PRINT "ELIGIBLE"
30 ... rest of program

You don't need to know machine
code—or even understand binary—to
produce simple games graphics.
Here are a couple of dozen that will
RUN on your computer

Anyone with a dozen hours' computer expe-
rience can create original graphics characters
for use in games. All you need is a pencil and
paper to sketch out your ideas, plus two—or
at most three—simple routines to turn these
ideas into computer pictures.

Each home computer has its own method
of creating new graphics from its user defined
graphics characters, or UDGs. The size of the
characters you can create easily also varies.
The Commodore, for example, has a standard
`sprite' which is 24 pixels (dots) by 21,
whereas the best that the Spectrum can offer
is a UDG only eight pixels by eight. The ZX81
and Vic 20 are not covered here, but a later
article will give some routines.

Whatever your computer offers, however,
the best way to start creating your own
graphics is in the 8 x 8 size—about the size of
an 'enemy' in a space game. Once you have
the knack of doing this, it is easy to create a
bigger graphic if your computer allows it. Or,
if it doesn't, to string two or three small
graphics together to make a larger one.

FROM DRAWING TO BINARY
Eventually, your computer will store the
information you give it in binary (base 2)
arithmetic. But you do not have to understand
binary—or even know what it is—to turn
your graph-paper character into rows of
binary numbers. All you need to know is:
1 Every time you want a dot, you use the
number 1.
2 Every time you want a space, you use 0.

Take the cross of Lorraine below, for
example. Its top line consists of three spaces,
one dot, and four more spaces. In binary,
that's 00010000.

The second line is two spaces, three dots
and three more spaces-00111000. And the
whole pattern can be represented like this:

0 	0 	0 	1 	0 	0 	0 	0
0 	0 	1 	1 	1 	0 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	1 	1 	1 	1 	1 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	0 	0
On some computers the DATA you need to set
up a user defined graphic can be entered

directly in this binary form. On others, you
first have to convert it into decimal (base 10)
or hexadecimal (base 16) arithmetic. So read
the section for your own machine (pages 40 to
44) before you do any conversions.

BINARY TO DECIMAL
The quickest way of converting binary into
decimal—that is, the ordinary units, tens,
hundreds, and thousands we use every day—
is to use a little chart eight rows wide by nine
rows deep. In the top row you write these
numbers: 128, 64, 32, 16, 8, 4, 2, 1. In the
other eight rows you write the binary for the
graphic that you want to reproduce. Here, for
example, is the chart for the cross of Lorraine:

128 	64 	32 	16 	8 	4 	2 	1
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	1 	1 	1 	0 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	1 	1 	1 	1 	1 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	0 	0 	0 0 0 0

To do the conversion, you ignore the Os
altogether. First you compare each of the is in
the binary with the number at the top of its
column. Then you take all the numbers for
the first horizontal row and add them up,
repeating the process for each row.

In the example above, the top row consists
of nothing, nothing, nothing, 16, nothing,
nothing, nothing, nothing. Total: 16.

The second row consists of nothing, no-
thing, 32, 16, 8, nothing, nothing, nothing.
Total for this row (32 + 16 + 8): 56.

By the time you have repeated this process
to the bottom of the chart you will have eight
decimal numbers. So your DATA statement, to
enter into your computer, will look like this:

DATA 16, 56, 16, 124, 16, 16, 16, 0

When you are new to it, this seems a long-
winded way of doing the job. But after half a
dozen attempts you will find yourself doing it
very rapidly. And some common
combinations—like decimal 255 for binary
11111111—you'll find yourself remember-
ing without bothering to work them out.

BINARY TO HEX
Converting binary to hexadecimal, if that's
what your computer wants, is even easier.

You will need this chart, although there is
no need to write out the binary numbers
alongside or below it.
Binary 	 Hexadecimal
0000 	0
0001 	 1
0010 	 2
0011 	3

0100 	 4

0101 	5

0110 	 6

■ FROM DRAWING TO BINARY
■ IN ONE EASY STAGE
■ BINARY/DECIMAL AND

BINARY/HEX CONVERSIONS
■ USING GRAPHICS IN

PROGRAMS

0111 	 7
1000 	8
1001 	9
1010 	 A
1011
1100
1101
1110
1111
This time you do not ignore the Os. The first
thing you do is to split each line of binary
numbers in half. Then you take the hex
equivalent of the first half-row (that is, group
of four digits) and write it down. Alongside it

you write the hex equivalent of the second
half-row. And the two together are the hex
number you need.

To return again to that cross of Lorraine.
The first half-row of the binary is by now
terribly familiar: 0001. In hex (look at the
chart) that's 1. The second half-row is 0000.
In hex, that's 0. Write the two numbers
together and you have 10—the hex number
you want for your DATA statement.

Similarly, if you split the second row you
will see that the first half is 0011—in hex, S-
and the second half is 1000—in hex, 8. So the
hex number for the whole line is 38.

Repeat the process to the bottom of the

binary listing and you'll have eight hex
numbers. And your DATA statement for the
computer will look something like this:

DATA 10, 38, 10, 7C, 10, 10, 10, 00

The only other thing you must do is to tell
your computer, which can't guess, whether
the numbers you are entering are in hex or in
decimal. How to do this is in the section for
your own machine.

Of course it is possible to write a short
program to convert binary into decimal, or
binary into hex. But such a program is not
much help if you want to amend something
when you are on the computer keyboard.

1 I
The Dragon and Tandy will accept DATA in
hex, decimal or binary.

If the DATA is in hex, you have to add an
extra line to the program, as shown below, to
turn it into decimal. But this is still normally
the neatest way of doing the job.

The first program draws a tiny aircraft
(below) in the top left-hand corner of the
screen—not the best place to view it, but the
easiest place to start if you want to write a
program to move it around the screen.

20 PMODE 4,1
30 PCLS
40 SCREEN 1,1
60 FOR L = 0 TO 7
70 READ N$
80 POKE L*32 + 1536,VAL("&11" + N$)
90 NEXT L
110 GOTO 110
500 DATA 00,10,18,9C,FF,9C,18,10

Type in the program and RUN it.

PMODE 4,1 has been selected in Line 20
because only this highest resolution mode
allows you to produce UDGs.

To clear the screen ready for your charac-
ter, you must use the PCLS command as in
Line 30. This applies not just to PMODE 4,1
but to all the high resolution modes.

To turn on the high resolution screen so
that the UDG can be displayed you use
SCREEN 1,1 as in Line 40. SCREEN 1,1 also
chooses the black and white colour set.

The FOR ... NEXT loop in Lines 60 and 90
causes Line 70 to be executed eight times.
Every time the computer reaches READ N$, it
reads the next piece of DATA in the DATA line,
Line 500.

Line 80 is important for two reasons. First,
it makes the pattern of pixels which corre-
spond to the hex numbers in Line 500 appear
on the screen. Second, it converts the inform-
ation from the DATA line into decimal, then
puts it directly into the part of the computer's
memory which governs the display on your TV
screen.

Finally, Line 110 is a loop which keeps the
high resolution screen switched on. Without
this line the program would end, making the
computer switch back automatically to the text
screen. So you wouldn't see your design on the
screen at all!

TALLER U s
Simply by changing Line 60 and altering the
DATA in Line 500, you can create a tall, thin
UDG instead of an 8 x 8.

First change Line 60 so that it reads:

60 FOR L = 0 TO 23

Next alter the DATA in Line 500 so that it is
now:

500 DATA 00,60,60,60,60,7E,6E,7E,7E,
78,78,78,78,7 F,7 F,78,78,78,78,7C,7C,
FC, FF,7F

When you RUN the program you should find a
picture of a rabbit on the screen.

Altering Line 60 has allowed more DATA to
be READ from Line 500, and the DATA in Line
500 defines the shape of the rabbit using hex
numbers.

Using this system, you can create a UDG
of any height you wish. Once you have
designed the UDG on graph paper, count
how many lines of pixels you have used. Next,
alter Line 60 so that the correct number of
lines are read. Then make sure that the
number of pieces of information in the DATA
statement corresponds to the number of times
the FOR ... NEXT loop is executed.

WIDER UDGs
To accommodate a graphic which is long and
low, instead of being tall and thin, is a bit
more complicated.

Start by changing Lines 60 and 80 so that
they read:

60 FOR L=0 TO 7
80 POKE L*32 + 1536 + F,VAL("&H" + N$)

Then alter the DATA in Line 500 so that it
reads:

500 DATA OF,0F,EF,EF,EF,EF,FE,44,FF,
FF,FF,FF, FF, FF,40,00, FF, FF, FF, FF,
FF,FF,66,66

And finally add these lines:

50 FOR F = 0 TO 2
100 NEXT F

When you RUN the altered program you
should find a picture of an articulated lorry on
the screen.

How does it work? The 24 pieces of DATA
in Line 500 make three squares each eight
pixels deep. If the DATA were read by a single
FOR ... NEXT loop as before, the lorry would
look peculiar, to say the least—it would be cut
up into three slices and stacked vertically
down the screen.

So the computer has to be told to arrange
the blocks side by side. To do this, an extra
FOR ... NEXT loop (Lines 50 and 100) is used,
and Line 80 is amended so that it now has + F
in the POKE statement.

What the program does is to READ the first
eight pieces of DATA and to POKE them on to
the screen. Then the extra FOR ... NEXT loop
alters the POKE value in Line 80 so that the
second block of DATA appears on the top line
of the screen alongside the first block. After
another eight pieces of DATA have been READ,
the final block is POKED on to the screen on
the top line.

MOVING UDGs
You can move the UDG of the aircraft around
the screen by adding these lines:

110 DIM A(3),B(3)
120 GET (0,0)-(7,7),A,G
130 PCLS
140 LET X =127
150 LET Y = 95
160 PUT (X,Y) — (X + 7,Y + 7),A,PSET
170 LET LX = X
180 LET LY = Y
190 IF PEEK(338) = 239 AND Y > 2 THEN

Y = Y— 2:GOTO 240
200 IF PEEK(342) = 247 AND Y <182 THEN

Y = Y+ 2:GOTO 240
210 IF PEEK(340) = 223 AND X> 3 THEN

X = X — 3:GOTO 240
220 IF PEEK(338) = 223 AND X<245 THEN

X = X + 3:GOTO 240
230 GOTO 190
240 PUT (LX,LY) — (LX + 7,LY + 7),B,PSET
250 GOTO 160

On the Tandy, change the 239 in Line 190 to
251; change 247 in Line 200 to 253; 223 in
Line 210 and 220 to 247.

When you RUN this, the Z key causes left
movement, X right movement, P upwards
movement and L downwards movement.

Three new BASIC keywords have been
introduced in this program—GET, PUT and
DIM. A full explanation is in a later article, but
GET allows the computer to remember what is
on a particular part of the screen, and PUT
allows the computer to place it anywhere on
the screen. DIM reserves memory space for
GET.

Lines 190 to 220 are the lines which detect
keypresses and move the UDG. Keyboard
control is covered on page 59.

If you want to move the rabbit you'll have
to make these alterations. On the Tandy, use
253, not 247, in Line 200.

110 DIM A(6),B(6)
120 GET (0,0) — (7,23),A,G
160 PUT (X,Y) — (X + 7,Y + 23),A, PSET
200 IF PEEK(342) = 247 AND Y <166 THEN

Y=Y+2:GOTO 240
240 PUT (LX, LY) — (LX + 7, LY + 23), B, PS ET

And to move the lorry, make these changes.
On the Tandy, use 253, not 247 in Line 200,
and 247 in place of 223 in Line 220.

110 DIM A(6),B(6)

120 GET (0,0) — (23,7),A,G
160 PUT (X,Y) — (X + 23,Y + 7),A, PSET
200 IF PEEK(342) = 247 AND Y<182 THEN

Y=Y+2:GOTO 240
220 IF PEEK(338)= 223 AND X < 229 THEN

X= X+ 3:GOTO 240
240 PUT (LX,LY) — (LX + 23,LY + 7),

B,PSET

USING BINARY DATA
You can put binary numbers in the DATA line
if you like, but make sure each number
:onsists of an 8-bit byte. You'll also have to
idd these lines to the program:

71 LET N = 0
72 FOR J =1 TO 8
74 IF MID$(N$,J,1)="1" THEN

N=N+2I(8—J)
76 NEXT J
And make sure that Line 80 reads as follows:

30 POKE L*32 +1536 + F,N

The new lines examine each bit in turn of the
3-bit number and convert it to a decimal
-lumber. It is, in short, the computer equiva-
ent of the conversion table in the introduc-
ion to this article.
The movement of high resolution graphics is

:overed in detail in a later article.

or:

So to define the character, you use either:

10 VDU 23,224,&3C,&7E,&DB,&FF,
&C3,&7E,&5A,&C3 	 100 VDU 23,225,&00,&80,&80,&BF,&FF,

&28,&28,&3C
110 VDU 23,226,&00,&0840EAFFAF8,

&50,&50,&7C

Then both parts have to be PRINTed next ti
each other in the right order:

120 dog$ = CHR$ 225 + CHR$ 226
130 PRINT TAB(10,10) dog$

200 VDU 23,228,&3C,813C,843C,&18,
&FF,&BD,&BD,&BD

210 VDU 23,229,&BD,&3C,&3C,&24,
&24,&24,&24,&E7

The trick when you display him is to get his
bottom part exactly below his top part. There! 10 VDU 23,224,60,126,219,255,195,

126,90,195

The VDU 23 part means 'define a character'.
The next number is the code number for that
character. There are 32 code numbers avail-
able, numbered from 224 to 255. It doesn't
matter what order you use them in. Then,
after the code number, come the eight num-
bers you worked out for the ghost.

The character has now been defined and
the computer knows what it is, but how do
you display it on the screen? That part is easy.

On the Acorn machines the list of numbers to
define your character can be in decimal or
hexadecimal, whichever you like. It is usually
easier to look up the table on page 38 and
convert the binary pattern directly into hex
rather than add up the decimal equivalent of
each line of dots. Remember, though, that
each hex number has to start with an amper-
sand sign—&—to let the computer know
what sort of number to expect.

The numbers for the little ghost shown
below are:

Binary Hex Decimal
00111100 3C 60
01111110 7E 126
11011011 DB 219
11111111 FF 255
11000011 C3 195
01111110 7E 126
01011010 5A 90
11000011 C3 195

First put the computer into any of the modes
except mode 7. For example:

5 MODE 1

Then all you do is PRINT the character:

20 PRINT TAB (5,10) CHR$ 224

RUN the program and see.
CHR$ is pronounced 'character string' and

the number is just the code number described
above.

Actually, CHR$ 224 doesn't mean much in
itself. So to remind you what it is, you can add
an extra line:

15 ghost $ = CHR$ 224

Then Line 20 becomes:

20 PRINT TAB (5,10) ghost $

Now it is obvious what is going on.

DEFINING LARGER CHARACTERS
The next character (below) is a sausage dog
and, being long and thin, he takes up two
character grids and needs two VDU statements
to define him—one for each grid:

Note you can use PRINT TAB to PRINT the
character exactly where you want.

For a longer sausage dog you will need to
define an extra middle section:

115 VDU 23,227,&00,&00,&00,&FF,
&FF,&00,&00,&00

Then add this character between his front and
back end:

120 dog$ = CH R$225 + CH R$227 + CH R$226

Now RUN the program to see the elongated
version. In fact, you can add as many middle
sections as you like—up to the whole width of
the screen!

MAKING A TALL, THIN CHARACTER
To display a tall, thin character, first define
him as usual:

are two ways of doing this. The first is to
PRINT each part separately at the correct
location, for example:

220 PRINT TAB(15,9) CHR$228 : PRINT
TAB(15,10) CHR$229

RUN the program to see that it does work. The
man should be standing next to the dog.

But a better way is to make up a complete
character as you did for the dog. Here's how:

220 man$ = CHR$228 + CHR$10 + CHR$8 +
CHR$229

230 PRINT TAB(15,9) man$

CHR$10 and 8 are there to control the cursor.
CHR$10 moves it down one space and CHR$8
moves it back a space so it's in just the right
place to PRINT the man's legs.

The three characters we've looked at were
defined and PRINTed in turn. But normally in
a program, all the VDU 23 character defi-
nitions would be grouped together near the
start of the program, just to make your
program neater.

So here are all the lines you have entered so
far, but renumbered so you can see more
clearly what is going on.

Standard UDGs based on an 8 x 8 pixel
matrix are used on the Commodore 64 less
frequently than the somewhat more versatile
sprite (see page 15) which is much better for
games programming.

However, 8 x 8 UDGs do prove useful at
times, and a fairly common application is for
redefining part or all of the normal character
set. You may wish to introduce changes of this
sort in programs which have to incorporate
foreign punctuation, symbols or letters, for
instance.

Take, for example, the French character e
which doesn't form part of the normal charac-
ter set. This and other characters could be
incorporated within a new character set for
use whenever French lettering was required.

Creating the actual UDGs follows exactly
the same methods outlined elsewhere in this
article. For example, the character e can be
represented in the following forms, ready for
inclusion in DATA statements:

5 MODE 1
10 VDU 23,224,&3C,8t7EADBAFFAC3,

&7E,&5A,&C3
20 VDU 23,225,&00,&80,&80,&BF,&FF,

&28,&28,&3C
30 VDU 23,226,&00,&08,8i0EAFFAF8,

&50,&50,&7C
40 VDU 23,227,&00,&00,&00,&FF,&FF,

&00,&00,&00
50 VDU 23,228,&3C,&3C,&3C,&18,&FF,

Binary Hex Decimal
00010000 10 16
00001000 08 8
00111100 3C 60
01100110 66 102
01111110 7E 126
01100000 60 96
00111100 3C 60
00000000 00 0

MEN ■■■■ •■ M ••EM •• 	ME

• ■■ •
• MEMO

■ ■■■■■■■■

The decimal form is most readily usable but
inconvenient to calculate. With the appropri-
ate programming either the binary or the hex
systems can be used.

Let's incorporate this character within a
new character set. Key in the following:

&BD,&BD,&BD
60 VDU 23,229,&BD,&3C,&3C,&24,&24,

&24,&24,&E7
70 ghost $=CHR$224
80 dog$=CHR$225+CHR$227+ CHR$226
90 man$=CHR$228+CHR$10 +CHRS8 +

CHR$229
100 PRINT TAB(5,10) ghosts
110 PRINT TAB(10,10) dog$
120 PRINT TAB(15,9) man$

10 A= 12 : Z= A"1024/256
20 POKE 53272, (PEEK(53272)AND240) OR A
30 POKE 52,Z: POKE 56,Z: CLR: A=12
40 POKE 56334, PEEK (56334) AND 254
50 POKE 1, PEEK (1) AND 251
60 FOR J= 0 TO 56832-53248
70 POKE A*1024 +J, PEEK (53248+J)
80 NEXT J
90 POKE 1, PEEK (1) OR 4
100 POKE 56334, PEEK (56334) OR 1
110 SC=5: Z=102412: FOR J=Z+ (SC*8)

TO Z+ (SC*8)+7: READ A$
120 N =0: FOR T=1 TO LEN(A$)
130 IF MID$(A$,T,1)="1" THEN N= N + 2 i

(LEN(A$) —T)
140 NEXT T:POKE J,N: NEXT J
500 DATA 00010000
510 DATA 00001000
520 DATA 00111100
530 DATA 01100110
540 DATA 01111110
550 DATA 01100000
560 DATA 00111100
570 DATA 00000000 411$

If you now RUN this program, nothing ap-
pears to happen for about a minute. When the
`ready' prompt appears, press the E key and
you should see a displayed. If you see just
graphics symbols, simultaneously press the
C= and I SHIFTI keys.

Now try changing the pattern of Os and ls
in the DATA statements to create another
letter, or a simple graphic. (Remember to hit
'RETURN' to enter each line.) Then reRUN the
program, and press E again to display your
new UDG.

PROGRAM CLOSE-UP
For those with more experience, here's an
explanation of how the program works:

The normal characters, many of which can
be used in a newly designed character set, are
in ROM and cannot themselves be changed.
Nor can they be used in addition to UDG
characters, which poses problems. But the
technique is to copy what you want of the
ROM character set into RAM, where you can
make the necessary changes, replacing un-
wanted characters with new ones. These
characters can be letters or graphics or a
mixture of the two. The ROM character set is
then switched out and the RAM character set
takes over.

The program undertakes several very dis-
tinct operations, the first of which is to
allocate RAM memory for storage of the new

character set. The 	of A in Lines 10 and
30 enables you tobose which area of
memory is to be used. Any integer value in the
4 to 16 range cfn be used, and in the program
the value 12 changes the character memory
pointer to 12288 (which is 12*1024). A value
4 would effectively place character storage at
location 4096 (which is 4* 1024) ... and so on.

Line 30 changes two pointers (for end-of-
BASIC, and start of string storage) so that a
BASIC program does not overwrite—and so
ruin—the character set. This is a much used
technique for protecting programs from
BASIC.

Next, in Line 40, the program turns off
what is called the interrupt keyboard scan.
Line 50 switches in the character ROM.

The copying routine occurs in Lines 6C
and 80. The figures 53248 and 56832 in Line
60 refer to the start and finish addresses of the
eight-part character sets which are copied into
RAM. Although the program copies the lot,
you cap restrict the amount that is copied by
changing the range of values taken by J. You
can even pick and choose which characters
you want to copy, as will be explained in a
later article.

When copying is complete—this explains
the minute-long delay when the program is
RUN—the character ROM is switched out
(Line 90) and the interrupt is then restored
(Line 100).

Lines 110 and 140 change the definition of
a selected character (SC) in character memory
by READing the relevant DATA statements
(Lines 500-580) via the binary-decimal con-
version routine in Lines 120 and 130. The
value of SC is the screen code poke value
which you can find listed in the appendices of
your manuals. An SC of 5 will display your
character when E is pressed, as previously
mentioned. Try changing this value and
reRUNing the program for other screen code
values, so assigning another key to the UDG.

To save program space the DATA statement
lines may be compressed to a single line:
(delete 510-580)

500 DATA00010000,00001000,00111100,
01100110,01111110,01100000,001111
00,00000000

But note that this form doesn't allow you to
gauge the appearance of your UDG quite so
easily—nor can you edit it so quickly.

If you prefer to work in hex notation
substitute the following lines, first deleting
Lines 510 to 580:

130 M = ASC(MIDVA$,T,1)) — 48:N =
(M + (M > 9) . 7) . 16i(LEN(A$) —T) + N

500 DATA 10,08,3C,66,7E,60,3C,00

In this form, it is much simpler to key in and
edit line 500.

a
The Spectrum will accept DATA in either
binary numbers or decimal, but not in hex.

To see how it does this, first type in

PRINT "(graphics A)"

To get the (graphics A) bit, you first hit
!CAPS SHIFT and the GRAPHICS key tog-
ether, then type a.

What you see will look like an ordinary
capital A. But as described earlier (page 8), it
is one you can redefine into any 8 x 8 shape
you choose.

And to do that, all you need is a five-line
program. To 'plant' the fir tree opposite, for
instance, you enter:

10 FOR n = 0 TO 7
20 READ data
30 DATA BIN 00010000, BIN 00011000,

BIN 00111000, BIN 00111100, BIN
01111100, BIN 01111110, BIN 11111110,
BIN 00010000

40 POKE USR "a" + n, data
50 NEXT n

This program uses a FOR ... NEXT loop, Lines
10 and 50, to call up in order the eight lines

7 7M-TT

into which you want to enter DATA. Line 20
tells the computer to scan the DATA in Line
30 and Line 40 POKEs it in.

RUN the program, then type

PRINT "(graphics A)"

... again. You will find that the capital A has
vanished, and you have a fir tree in its place.

If you type NEW at this stage, the program
itself will of course be erased. But the fir tree
graphic will stay in memory until you dis-
connect the power supply to the computer. So
you can move it around the screen, or use it
for decorative effects, just as though it were a
standard character. Try this, for example:

5 CLS
10 FOR y = 3 TO 19
20 LET x = INT (RND*20) + 5
30 PRINT AT y,x; INK 4;"(graphics A)"
40 LET xx = INT (RND*20) + 5
50 PRINT AT y, xx; INK 2; "(graphics A)"

60 NEXT y

Could these be the hazards for a skiing game?
When you want to create a graphic larger

than the standard 8 x 8 UDG character, all
you do is call up and edit two or more UDGs
in turn. This program, for example, creates
the bow section of the destroyer below (which
you can build into a game by the methods
given in Games Programming 1):

10 FOR n = 0 TO 7
20 READ a
30 DATA BIN 0, BIN 0, BIN 0, BIN 00000111,

BIN 00000011, BIN 11111111
40 POKE USR "a" + n, a
50 NEXT n

Two points are worth noting here. The first is
that you can use just BIN 0—not eight OS — i f
the whole row is to be blank. The second is
that in Line 20 the simple variable a has been

used instead of the word DATA, which we
inserted just to make the earlier program
easier to understand. It could just as easily be
b, or c, or x, or even UNCLE BERT, so long as
you use the identical variable in Line 40.

When you come to enter the DATA for the
midships and stern sections, there is no need
to retype the whole program. With the
program RUN once—and the first bit of
graphic safely in memory—all you have to do
is to edit Line 40, changing USR "a" to USR
"b". And, of course, enter a new or edited
Line 30 to carry the new DATA.

Be careful when entering DATA that you do
have eight lines each time, even if some are
just Os. Too few lines and you will get an error
report: E Out of DATA, 20: 1. Too many, and
you'll find that your ship is sinking!

Finally, to enter DATA in decimal instead of
binary, you first convert the binary numbers
to decimal, as described in this article. Then
you omit the BIN (for binary) from the DATA
line of your program. Line 30 of the destroyer
program, for example, would become:

30 DATA 0, 0, 0, 7, 3, 255, 127, 63

AND NOW

11-11C1H1
Once you have grasped the general principles,
you can key in any of the graphics on these
pages. All will work on any computer covered
here. And by the tint you've done about three
of them, you'll find you are an expert, ready to
design new graphics of your own.

When entering DATA, which
system—binary, decimal or
hex—is best to use?
Given a choice between binary and
decimal, binary is usually better. It
allows you to alter individual lines of
numbers, or even a single 1 or 0, until
you are quite satisfied with your tiny
picture.

A decimal conversion is worth doing,
however, if you want to remember the
graphic for later—or repeated—use.

Given a choice between decimal and
hex, the latter is much quicker. It has
another advantage, too: it helps make
you familiar with hex itself—the
language of machine code
programming.

Is your address book in a mess? Are
your club files disorganized or your
cassette collection files more trouble
than they're worth? Here's a way to
bring order out of chaos

`But what does it actually do?' is a questiot
that people who don't have home computer
constantly ask those who do. And short o
saying, 'They're for doing home computing
on', there is usually no satisfactory answer.

But here is a program that does make you
computer do some useful work. It is
computer filing system which is so flexible i
has dozens of applications in everyday life
You can use it to store the names am
addresses of friends or the members of a club
or to keep track of family and friends' birth.
days, or to store the details of coin, butterfl ∎
or recipe collections, or even to keep track o
your growing collection of computer games

The only limit to what you can do witl
this program lies in the size of you
computer's RAM memory. For most jobs
you will find that a 32K machine is a practica
minimum. There are thus no programs for th(
ZX81, Vic 20, or Spectrum 16K. And anyway
you should remember this: because holm
computers' memories are small compared witl
those of business machines, the shorter yot
can keep each entry the better.

THE MAIN MENU
Once you have typed in the program and RUF
it, it will automatically PRINT on the screet
the main menu. This is a list of the things yot
can do to the file. Yqu can 'enter a record', fa
example, or 'search the file'.

But first of all you have to 'open a file' am
feed some records into it.

OPENING A FILE
As you will already have discovered, com•
puters need precise details of what you wane
before they'll do anything at all.

To open a new file you first need to tell th(
computer the number of records you want ,

and the maximum length each record can be
`OPEN A FILE' is option 1 on the main menu, sc
to select it you press the 1 key. The words 'Art
you sure?' will then flash up on the screen
This is a precaution against your accidentall3
pressing the 1 key—because if the filing
system is already storing DATA, going into thi
`open a file' routine would destroy it.

If you are sure that you want to open a nev
file, press Y. But if the file is already storing

information that you want to keep, press any
key other than Y—N for example—and the
computer will automatically return you to the
main menu.

HOW LONG A FIELD?
Once you have pressed Y to continue,
computer will ask you how many fields you
want. Fields are the items of information you
want stored in each record. For example, if
you are a keen train spotter the fields you
would need might be: locomotive cl*si-num-
ber; date when seen; and place where seen—
four in all.

The maximum number of fields in any
individual record is eight; otherwise you
could not display them all on the screen at the
same time.

With the number of fields entered, the
computer's next question will be, 'Name of
first field?'. (In the example above, your
answer would be 'CLASS'.)

Then you will be asked the length of the
first field—that is, the maximum number of
characters that the first field is to hold.

The maximum length of field allowed in
the program is 19 characters (27 on the Acorn
machines). This means that if the information
you want to file—an address, say—will not fit
into this, you will have to divide the field into
two or more pieces. With an address you
could do this by initiating separate fields for
number/street and city/postcode.

Once it has the information about the first
field, the computer will ask the same ques-
tions about the second field, third field and so
on. Obviously, the shorter you can keep both
the names of fields and the number of
characters in each, the more records your file
can hold.

This done, the computer will quickly work
out how many records it has room for. This
number will be displayed on the screen.

On the Spectrum only, you will next be
asked to specify how many records you
actually want. Otherwise, if the number of
records you need is much smaller than the
permitted maximum, you will have a problem
when you SAVE the file on tape. The Spec-
trum will spend a lot of time recording
unused memory.

Once you have completed the opening-a-file
procedure, the program will automatically
take you back to the main menu, where you
select option 2—by pushing the 2 key—to
start entering your records.

At the top of the screen the computer will
keep a running tally of how many records you
have entered, along with the total space in the
store. It will say: 'You have used 10 out of 100
records' or whatever the numbers are.

Under that, the computer will display the
field names. At the bottom where the cursor
is, write in the details you want recorded

■ KEEPING TRACK OF
YOUR COLLECTIONS

■ A PRACTICAL FILING
PROGRAM

•• USING YOUR AVAILABLE

MEMORY EFFICIENTLY
■ SETTING UP A NEW FILE
■ ADDING TO AND VIEWING

YOUR FILE
■ STORING AND RECALLING

YOUR INFORMATION

under each field heading. Remember to keep
them as short as possible and within the
maximum character length you have set.

When you press the 'ENTER I or IRETURNI key
the information you have keyed in will be
PRINTed out next to the field name. The
bottom of the screen will be cleared, ready for
you to key in the next piece of information.

This method starts with the first field at the
top of the screen and works its way down the
screen each time you key in information and
press IRETURNI or IENTERI. When you have
filled in the last field on the record the
computer will move on to the next—blank-
record.

If you hit the 'RETURN I or IENTERI key again
before you start filling in the first field, the
computer will take you back to the main
menu.

VIEWING THE RECORDS
To look over the records you have entered,
you select option number 3 on the main
menu, 'VIEW RECORDS', by pressing key 3.
The screen will then display the first record—
not necessarily the first one you put in, but
the first one according to the program's own
selection method.

Computers' methods of arranging al-
phabetical order vary slightly. But broadly,

they select the records in alphabetical order
by the first field, which in many cases will be
`NAME'. To do this, the computer looks at
the first entry in the first field and orders the
records alphabetically. If more than one
record has the same first letter, it orders them
by the second letter. And then by the third,
and so on.

The first problem arises when you have
numbers in the first field. The computer will
select any number before any letter, but it
goes through the same ordering method digit
by djt when deciding between numbers,
rather than looking at the number as a whole.
In other words, if you fed in records with the
first fields carrying the numbers from 1 to
100, the computer would select 1, 10, 11, 12,
13, 14, 15, 16,C, 18, 19 and 100 before it got
around to 2, 24 21 and so on.

The way round this is to number the
records 001, 002.... 010, 011 ... up to 100.
Or, of course, not to use numbers in the first
field at all.

The second problem arises if you use a
mixture of capital and lower case letters,
because the computer chooses capitals ahead
of lower case. So 'ABC Limited' would be
ahead of 'Aaron and Co.' Depending on what
your datafile is to contain, you may find it
convenient to list everything in capitals to get
round this problem.

When viewing the records you will find:

F(ORWARD) B(ACK) M(ENU)

written near the bottom of the screen. If you
press the F key, the computer will display the
next record, and if you press F repeatedly, it
will flip through the whole file record by
record.

Pressing the B key takes you back to the
record before the one on the screen. So
between the F and the B you can run back-
wards and forwards through the file.

Pressing M will return you to the main
menu at any point.

Underneath the `F(ORWARD) BACK)
M(ENU)' line, you will find:

A(MEND) D(ELETE) P(RINTER)

These are explained in the next article in this
series, pages 75 to 79.

SAVEING AND LOADING
As you can see, the main menu gives you SAVE
and LOAD options-5 and 6. These are in the
main menu because, except on the Spectrum,
you have to store the DATA contained in the
file separately from the datafile program
itself.

When you want to SAVE your file, you
press 5 and the computer will ask you to give
the file a filename. Once you have keyed in the
filename and pressed RETURN I or 'ENTERS, the
computer will tell you that it is 'SAVING
INFORMATION NOW'.

On the Commodore, Dragon and Acorn
computers, the DATA alone will now be
stored. To SAVE the program, you will have
to select option 7 on the main menu, 'QUIT
PROGRAM', by pressing key 7 and then go into
the normal SAVE routine for your machine.

When, at some time in the future, you want
to consult your files, you will (on Commo-
dore, Acorn and Dragon) have to LOAD in two
stages. First you LOAD the program using
your machine's normal LOAD routine. Then
you LOAD the DATA by selecting option 6,
`LOAD FILE', and pressing the 6 key. The
computer will then ask you for the name of the
file you want to see. When you have keyed in
the filename and pressed the 'RETURN I key, the
machine will tell you to 'PRESS PLAY AND ANY
KEY'.

The computer will search down the tape as
it runs until it finds the file you want, which it
LOADs. It will then tell you that the file has
been 'LOADED CORRECTLY'. If the file you
want isn't on the tape, the computervyill
simply list all the files that are. In either cakit
will then take you back to the main menu. At
that point, or at any time later when you have
the main menu in front of you, you can select
option 6 and LOAD another file.

On the Spectrum, the DATA and the main
program LOAD together. Once you have
LOADed the first file using your standard
LOAD method, you can LOAD any subsequent
files simply by selecting option 6 on the main
menu.

AMENDING AND DELETING
The programs for the individual machines as
given below have huge gaps in their line
numbers—from Line 2000-odd to Line 6000.

But number them as they are given here.
The missing lines are for amending a record,
deleting a record and for cross-referencing—
the function at which a computer is so much
more efficient than a mechanical system.

Details of these options are in the next
article in this series when some temporary
lines present here will be overwritten.

2 printchr$(8):gosub6:goto100
6 dimfc(7,1):fori = lto7:readfc(i 3 O):fc(1,1) = —1

:next:data — 1„„, —1, —1
12 dimof(3):of(0) = 64:of(1) = 0:of(2) =

128: of (3) = 64
14 dimlx(8),hx(8)
20 vic = 0
22 bd = 53280:bg = 53281: bb = 0
24 cc$ = chr$(5):bc = 0
28 sb =1024: LL = 40:sh = 25
40 pokebg,0:pokebd,0
42 printchr$(14)
44 gr$ = chr$(30):pu$ = chr$(156):y1$ =

chr$(158)
46 cs$ = chr$(147):ch$ = chr$(19)
48 cd$ = chr$(17):cu$ = chr$(145)
50 rv$= chr$(18):ro$ =chr$(146)
52 cl$ = chr$(157):cr$= chr$(29):c4$ =

cd$ + cd$ + cd$ + cd$
56 dl$=chr$(20):d4$=d1$ +dl$ + dl$ + dl$:

is$ = chr$(148)
58 rt$= chr$(13)
60 qt$ = chr$(34):cm$ = chr$(44)
704=right$("BEIBEIBBBBEI

1281313138881313131313
8888E1138128121988
EIBBBB",a)

72 x1$ = cd$ + rv$ +cc$:x2$=ro$+
"0" + gr$ + rv$:x3$= ro$ + "0 ❑ ❑ "
+ rv$ + cc$

74 x4$ = x4$ + cu$
76 dimm$(7):fori = 1to7:readm$(i):next
78 data" ❑ Open a file0 ❑ ❑ ❑ "," ❑ Enter

records E 0 "," 0 View records 0 ❑ ❑ "
80 data" ❑ Search records0 ❑ 0"," ❑ Save

tape file 0 ❑ "," ❑ Load tape file ❑ ❑ "
82 data" ❑ Quit program ❑ "
84 dimau$(6):fori = lto6:readau$ (i): next

86 data"Forward","0Back0 0",
" ❑ Menu ❑ 0"," ❑ Amend ❑ ",
"Delete ❑ 	❑ Print ❑ "

96 w1$ = Iv$ + pu$ + "DARE YOU SURE
(y/n)0?0"+cc$+ro$:return

100 printcs$ + cc$ + ul$
110 printpu$" ❑ * ❑ ❑ ❑ * ❑ ❑ *

❑ E*EI*0 D*0 D =0 El
*0***0*0 D*0 . 0 0"

120 print" ❑ ** ❑ ** ❑ * ❑ * ❑

*0**0•0 0 0**0**0
*0 0 0 - 0 . 0 . 0 0"

130 print" ❑ • ❑ * ❑ * ❑ *** ❑ *
❑ * ❑ ** ❑❑❑ * ❑ * ❑ * ❑

0 E*00*0 0"
140 print" ❑ * ❑❑❑ * ❑ • ❑ *

❑ • ❑ * ❑❑ * ❑❑❑ * ❑❑❑ * ❑

*000 . 0 0*0*0 0"
150 print"0 . 000 . 0*0*0

*0*0 E*0 0 D*0 0 0*0
***0•D 0•0 0**"

160 printcdul$
500 printx1$"1"x2$m$(1)x3$;
510 iffd=Othen 550
520 print"4"x2m(4)
530 printxl$"2"x2$m$(2)x3$"5"x2m(5)
540 printx1$"3"x2$m$(3)x3S;
550 print"6"x2m(6)
560 printtab(11)x1$"7"x2$m$(7)c4$
600 printtab(11)x4$" ❑ SELECT ❑ ❑

OPTION ❑ "ro$:ford =1 to 250:next
610 geta$:ifa$ = —then650
620 a = asc(a$) — 48:ifa <lora > 7thengosub

10000:goto650
630 goto700
650 printtab(11)x4rv" ❑ SELECT 0 ❑

OPTIOND":ford=lto250:next
660 geta$:ifa$=`"'then 600
670 a = asc(a$)-48:ifa <lora > 7thengosub

10000:goto600
700 ifnotfc(a,—fd)thengosub10000: goto600
800 iffc(a,0) = Oorfd = Othen 890
810 ix$ = m$(a):gosub14500
820 ifaa$ < > "y"then100
830 ifa = 7then900
840 poke631,a:clrgosub6:a= peek(631):

goto700
890 ifu = Oand((a = 3)or(a = 4))thengosub

10000:goto600
900 onagosub1000,2000,3980,4000,950,

950,7000
910 goto100
950 printrocsgr$tab(11)m$(a)c4$
960 print"Name of file:?":x =16:y = 5 — vic:

z = 10:gosub13000:f$ = ix$
972 iff$ = — then950
980 ifa = 6then6000
990 ifa = 5then5000
1000 printcscd"Number of fields (1-8):? ❑ "
1010 ok$ = "12345678":gosub10600:nf = ix:

printaacd:y = 3 — vic:tt = 5 — sh — 2*vic

1020 forn = 1tonf
1030 print "Enter heading"n"0:?0";
1040 x = 20:z = 10:gosub13000
1045 iflen(ix$) = Othenprintro$rtcucu$:

goto1030
1050 hd$(n)=ix$
1060 printtab(13):printd4Sd4$d4$:x = 0:

gosub11500
1070 print" Enter field ❑ " ix$" ❑ length:?"
1080 x = 23 + len(hd$(n)):z =2:gosub13000

ifix$ = ""thengosub10000:goto1080
1090 gosub12000:hx(n) = 2+ int((12 + ix)/II
1092 ifix < 1 orhx(n) > 3thengosub10000:

goto1080
1094 tt = tt + hx(n)
1096 Ix(n) = ix:y = y+ 2:print:print
1098 next
1100 In = 0:fori =1tonf:In = In + lx(i):next:

fr=fre(0):iffr<Othenfr = fr + 65536
1110 v= int(fr/(In + 5+ rnf))
1120 print"You can use0"v" ❑ records":

ford =1to1500:next
1130 dimt$(v,nf —1),r(v)
1140 u0 = 0
1200 foru = uOtov
1210 printcsccrv$"You have used"u"

11 0 out of"v"11 ❑ records"cd$
1220 up = u:r(up) = up
1230 forix =ltonf
1240 gosub3720
1250 ifix = landix$ = —then1400
1260 fori=lto500:next
1280 next
1300 ifu = Otheni 340
1302 ix$=t$(u,0):ru=u:su = u
1310 foru2 = Otou —1
1320 ift$(r(u2),0) > ix$then1350
1330 next
1340 u2 = su:goto1380
1350 fordn = utou2 +1step-1
1360 r(dn) = r(dn —1)
1370 next
1380 r(u2) = ru:ifa> 2thenup= u2:

printchccrvr 0 THIS IS RECORD 0 "
up + 1:goto3100

1390 nextu
1400 fd = —1
1990 return
2000 u0 = u:b =1
2100 goto1200
3000 u0= up-1
3010 ifu0 < Othenu0 = u —1:ifa = 4then392e
3020 forup = uOtou —1
3030 ifa=4then4110
3040 printcsccry$" ❑ THIS IS RECORD ❑ '

up+1
3050 forix —1tonfigosub3770:next
3100 x= 0:y= sh — 2 + rvic:gosub11500
3110 fori=lto6:printx3$x2$au$(i);:

ifi = 3thenprintro$" ❑ ❑ ❑ ❑ ❑ ❑ 0";
3120 next

3200 ok$="fbmadp111":gosub10600
3210 b= ix
3300 printro$;:onbgoto3900,3000,1990,

3700,3400,3600,3900
3400 goto100
3600 gosub3720:print"Is printer ready

(y/n)";:gosub10500
3610 ifaa$ = "n"thengosub3720:goto3100
3620 open4,4,7:cmd4
3630 print # 4," ❑ this record ❑ " up + 1

" ❑ used ❑ "u" ❑ records"
3640 forn = ltonf:print # 4:print # 4," 0"

hd$(n)":"spc(12 — len(hd$(n)))t$(r(up),
n-1)

3650 next:print # 4,ul$:close4:goto3100
3700 goto100
3720 y= sh —2 + rvic:x= 0 :gosub11500:

printro$;:z = 11* (2 — 2*vic) — 2:gosub
13500

3722 ifb=6thenreturn
3730 printhd$(ix)ro$"0:";:x = 12:

z= lx(ix):gosub11500
3760 gosub13010:t$(r(up),ix —1) = ix$
3770 y = 2 — vic: ifix > 1thenforn = 1toix —1:

y=y+ hx(n)+ (n< =n):next
3780 x=0:gosub11500:printrohd(ix)"0:"

tab(13);:ifa > 2thengosub13500
3790 printa(r(up),ix-1):return
3800 ifix > 1then3100
3810 ifup>Othenift$(r(up),0)<t$(r(up-1),0)

then3830
3820 ifup= u —1ort$(r(up),0) < =

a(r(up + 1),0)then3100
3830 ix$=t$(r(up),0):ru=r(up):

ifup = u—lthen3850
3840 fordn = uptou-1:r(dn)= r(dn +1):next
3850 su= u —1
3855 goto1310

Making long programs easier
Typing in long programs which someone
else has written can be a laborious—even
daunting—task. But you can make it easier
by typing only a short section at a time,
then checking it. Many programs are
structured into more or less self-contained
sections, such as subroutines, procedures
and loops, but if you cannot see such a
structure then just use short sections of 20
or 30 lines. Fortunately, the more you
learn about programming and the better
you understand each line, the fewer mis-
takes you are likely to make.

3900 nextup
3910 ifa < > 4then3980
3920 printcsxl" 0 END OF FILE WHILE

SEARCHING"
3930 printx1$"D DO YOU WISH TO TRY

FROM START (y/n)?":gosubl 0500
3935 if aa$="y" then goto 4000
3940 ifaa$ < >"y"thenreturn
3950 ifb=2then3020
3980 u0=0:b=1
3990 goto3010
4000 return
4110 ix$ = t$(r(up),fx — 1)
4120 fe=len(ix$)—ff +1
4130 iffe < lthen4160
4140 forj=ltofelmid$(ix$,l,ff) = fx$ then3040
4150 next
4160 ifb=2then3000
4170 goto3900
5000 printcsrv"0 ❑ ❑ ❑ ❑ 0 ❑ ❑

POSITION TAPE FOR OUTPUT ❑ ❑ ❑ ❑

0000"
5005 print" ❑ ❑ ❑ ❑ 0 111Press return key

when ready."
5010 geta$:ifa$ < > rt$then5010
5100 open 1,1,1,f$
5110 print" ❑ Saving information now ❑ "
5120 print #1,u;cm$;nf;cm$;tt
5130 forn =ltonf:print#1,qthd(n)qtcm

lx(n)cm$hx(n):next
5140 forup=Otou:forn=ltonf:print#1,qt$

t$(up,n-1)qt$:next:print#1,r(up):next
5150 closel
5990 return
6000 print csrv"D 0 ❑ ❑ 0 ❑ ❑ ❑

POSITION TAPE FOR OUTPUT 0 ❑ ❑

0000 ❑ "
6005 print"D ❑ ❑ ❑ 0 111 Press return key

when ready."
6010 getaa$:ifaa$ < > rt$then6010
6100 open 1,1,0,f$
6110 print"found and loading"
6120 input#1,u,nf,tt
6130 forn=1tonf:input#1,hd$(n),1x(n),

hx(n):next
6140 In= 0:forn =ltonf:In = In + lx(n):next:

fr = fre(0):iffr < Othenfr = fr + 65536
6150 v= int(fr/(In + 5 + 3*nf))
6160 dimt$(v,nf —1),r(v)
6200 forup=Otou:forn=ltonf:input#1,

t$(up,n-1):next
6210 input#1,r(up):next
6220 closel
6980 fd= —1
6990 return
7000 printcs$:end
10000 poke54277,33:poke54278,255:

poke54273 + 23,15
10005 poke54273,6:poke54276,33:

ford =1to50:next
10006 poke54273 + 23,0

10010 return
10500 ok$="yn"
10600 getaa$:ifaa$ = ""then10600
10610 ix = 0:fori =ltolen(ok$):ifaa$=

mid$(ok$,i,l)thenix = i
10620 next: ifix = Othengosubl 0000:gotol 0600
10630 return
11500 printch$;
11510 ify>Othenforyy=ltoy:printcd$;:next
11520 ifx>Othenforxx=ltox:printcr$;:next
11530 return
12000 ix = —1:fori=1tolen(ix$)
12010 a$=mid$(ix$,i,l)
12020 ifa$ < > " ❑ "thenl 2050
12030 ifi =1 on = len(ix$)then12060
12040 ifmid$(ix$,i —1,1) = "0"then1 2060
12050 ifa$ < "0"ora$ > "9"thengosubl 0000:

return
12060 next
12070 ix= val(ix$):return
13000 gosub11500:gosubl 3500
13010 p0=sb+11*y+x:p1=p0:i=128:

ix$ = ""
13020 pokepl ,(peek(pl)and127)or

(iand128)
13030 geta$:i= (i+12)and255:

ifa$ = ""then13020
13040 ifa$ = dl$then13150
13050 ifa$ = rt$thenreturn
13060 ifasc(a$)andl 27 < 32then13190
13100 ifpl > = p0 + zthen13190
13110 pokepl ,peek(pl)and127:p1 = pl +1:

printa$;:ix$ = ix$ + a$:gotol 3020
13150 ifpl = pOthen13190
13160 pokepl ,peek(pl)and127:p1 = pl — 1:

printcl$" ❑ "cl$;:ix$ = left$(ix$,p1 — p0)
13170 gotol 3020
13190 gosubl 0000:gotol 3020
13500 fori = ltoz:print" ❑ ";:next
13510 fori=ltoz:printcl$;:next
13520 return
14500 b=6:gosub3720:printcd$" ❑ ❑ ❑

❑ 111 0 	"pu$wl ylrvcu

El" 14;
14530 gosubl 0500
14540 return

The ❑ symbol denotes an important space.
Enter on the space key, not as a graphic.

5 LET R =0: LET U=0: LET V=1
10 BORDER V: PAPER V: INK 7: POKE

23609, 20: POKE 23658,8
100 CLS : PRINT INVERSE V;AT V,6;"0 M

❑ A ❑ I ❑ N ❑❑❑ M ❑ E ❑ N ❑ U ❑ "
110 PRINT AT 5,6;"1 :— Open a

file""TAB 6;"2 :— Enter a record' TAB 6;
"3 :— View records'"'TAB 6;"4 :— Search
option""TAB 6;"5 :— Save file'"'TAB 6;

"6 :— Load file""TAB 6;"7 :—Quit pro-
gram"; # V;TAB 6;"— SELECT OPTION —"

500 LET 1$ =1NKEY$: IF 1$ = "" THEN GOTO
500

510 IF I$<"1" OR 1$> "7" THEN GOTO 500
520 IF R=U AND 1$< >"1" AND 1$< >

"6" AND I$< >"7" THEN GOTO 500
530 BEEP .1,10: CLS : GOSUB (CODE

1$ —48)*1000: GOTO 100
1000 PRINT AT 7,9;"ARE YOU SURE ?":

PAUSE U: IF 1NKEY$= "" THEN
GOTO 1000

1010 IF 1NKEY$< >"Y" THEN RETURN
1020 PRINT INVERSE V;AT 10,6;" ❑ CREATE

A NEW FILED"
1030 INPUT AT 0,0;"Number of fields

(1-8)? ❑ ";A: IF A<1 OR A>8 THEN
GOTO 1030

1040 DIM A(A): DIM B(A+ V): DIM
N$(A,10):LET T= U: FOR N=V TO A

1050 INPUT AT 0,0;"Name of
field ❑ ";(N);" O? ❑ "; LINE N$(N)

1060 INPUT AT V,0;"Length of
field El ";(N);" ❑ ? ❑ ";A(N): IF
A(N) >50 THEN GOTO 1060

1070 LET B(N)=T: LET T=T+A(N): NEXT
N:LET B(N)=T

1080 PRINT AT 16,2;"Room for
about ❑ ";INTMPEEK 23730 +256*PEEK
23731)-29500)/T);" ❑ records"

1090 INPUT "How many records ? ❑ ";R:
DIMA$(R,T): RETURN

2000 LET C= V
2010 IF A$(C,V) = " CI" THEN GOTO 2100
?020 IF C= R THEN GOTO 2500
?030 LET C= C+ V: GOTO 2010
?100 PRINT AT 0,0;C — V;" 0 out

of ❑ ";R;" ❑ records in use"
?110 FOR N=V TO A: PRINT INVERSE

V;AT V+ N*2,U;N$(N); INVERSE 0;AT
V+ N*2,12; FLASH V;"?": INPUT "(up
to CI "; (A(N));" 0 characters)", LINE
A$(C,B(N)+ V TO B(N+V)): PRINT AT
V+ 2*N,12;A$(C,B(N)+V TO B(N+V)):
NEXT N

?120 FOR F= V TO 150: NEXT F: IF C=V
THEN RETURN

2130 LET N =C
2140 IF A$(C) > =A$(C—V) THEN RETURN
2150 LET X$=A$(C): LET A$(C)= A$(C— V):

LET A$(C—V)=X$: LET C= C — V: IF
C=V THEN RETURN

2160 GOTO 2140
2500 CLS : PRINT FLASH 1;AT 10,6;" ❑ FE

IDLEEE ❑ DFOUDLELD":
FOR F =V TO 400: NEXT F: RETURN

3000 LET D = V: IF A$(V,V) = "E" THEN
RETURN

3010 IF D=U THEN LET D=V
3015 IF D—V=R THEN LET D= D —V
3020 IF A$(D,V)= "CI" THEN LET D= D — V

3030 GOSUB 9500
3040 IF OP= V THEN LET D= D + V: GOTO

3010
3050 IF OP =2 THEN LET D = D —V: GOTO

3010
3060 IF OP=3 THEN RETURN
3070 IF OP=4 THEN GOSUB 8000
3080 IF OP=5 THEN LET MD = V: GOSUB

9000:IF D=U THEN RETURN
3090 GOTO 3030
4000 RETURN: REM TEMPORARY LINE
5000 INPUT "Enter file name00"; LINE

Q$:IF LEN Q$ <V OR LEN Q$ >10
THEN GOTO 5000

5010 SAVE 0$ LINE 10: RETURN
6000 PRINT AT 8,U;"Enter name of file to be

loaded, or just ENTER to load first file"

6010 INPUT LINE X$: IF LEN X$ >10
THEN GOTO 6010

6020 PRINT AT 13,U;"PRESS PLAY
ON CASSETTE RECORDER": LOAD X$

7000 PRINT AT 10,8;"Are you sure ?":IF
1NKEY$="" THEN GOTO 7000

7010 IF 1NKEY$ < >"Y" THEN RETURN
7020 RANDOMIZE USR U
8000 RETURN: REM TEMPORARY LINE
9000 RETURN: REM TEMPORARY LINE
9500 PRINT AT U,U;"Record number ❑ ";D;

"El ❑ ": FOR N=V TO A: PRINT
INVERSE V;AT V + 2*N,U;N$(N); INVERSE
U;TAB 12;AS(D,B(N)+ V TO
B(N + V)): NEXT N

9510 PRINT INVERSE V;AT 20,U;" ❑ F(orward)
1110 B(ack)0 OE ❑ M(enu)il 	00

A(mend)0 ELIE
D(elete) ❑ ❑ Printer) ❑ "

9520 IF 1NKEY$= "" THEN GOTO 9520
9530 LET V$=1NKEY$: IF V$="P" THEN

COPY :LPRINT : LPRINT : LPRINT :
GOTO 9520

9540 LET OP=U: IF V$="F" THEN LET
OP= V:LET MO = V

9550 IF V$="B" THEN LET OP= 2: LET
MO= —V

9560 IF V$ = "M" THEN LET OP=3
9570 IF V$ = "A" THEN LET OP=4
9580 IF V$ = "D" THEN LET OP=5
9590 IF OP=U THEN GOTO 9520
9600 BEEP .1,10: RETURN

Ti=
20 PCLEAR1:CLEAR 11000:RS$ = "FE

BMADP":B$ = CHR$(128)
30 CLS:PR1NT@39,B$;"m";B$;"a";

B$;"i";B$;"n";B$;B$;B$;"m";B$;"e";
B$;"n";B$;"u";B$

35 POKE 144,3
40 PR1NT@164,"1 :—OPEN A FILE"
50 PRINT©196,"2 :— ENTER A RECORD"
60 PRINT@228,"3 :— VIEW RECORDS"
70 PRINT@260,"4 :— SEARCH OPTION"
80 PRINT@292,"5 :— SAVE FILE TO TAPE"
90 PRINT@324,"6 :— LOAD FILE FROM TAPE"
100 PRINT@356,"7 :— QUIT PROGRAM"
110 PRINT@481,"SELECT OPTION :";
120 1N$ = INKEYS:IFIN$ <"1"OR1N$ >

"7" THEN120
130 1F1N$< >"1" AND1N$< >"6"AND

R=0 AND1N$ < >"7"THEN120
140 SOUND30,1:CLS:IN = VAL(IN$)
150 ON IN GOSUB1000,2000,6000,5000,

7000,8000,9000
160 GOT030
1000 PRINT@41,"SET UP NEW FILE":

PRINT@231,"ARE YOU SURE (YIN)?' ,

 1010 1N$=INKEY$:IFIN$< >"Y"AND
IN $< >"N" THEN1010

1020 1F1N$< >"Y" THENRETURN
1030 IFR > 0 THENRUN9200
1040 CLS:PRINT@41,"SET UP NEW FILE"
1050 PRINT@385,"NUMBER OF FIELDS

(1-8)";:INPUTA:A = ABS(INT(A))
1060 IFA > 8 ORA <1 THEN1050
1070 DIM A(A),N$(A)
1080 PRINT@384,"":PRINT@96,"":

FORN = 1TOA
1090 PRINT:PRINT" NAME OF FIELD";

N;"?";:L1NEINPUTN$(N):N$(N)=
LEFT$(NS(N),10)

1100 PRINT"LENGTH OF FIELD";
N;:INPUTA(N):A(N)=ABS(INT(A(N)))

1110 1FA(N)>19 OR A(N)<1 THEN1100
1120 TS = TS + A(N)
1130 NEXT:R INT(11000/(5 + 5*. A)) —1:

PRINT" ❑ MAX NUMBER OF

RECORDS= ";R
1140 DIMA$(R,A):FOR1= 1102000:

NEXT:RETURN
2000 G=0
2010 IFNR= R THEN2180
2020 NR=NR+1
2030 CLS:PRINT@O,NR-1;" ❑ OUT

OF";R;"RECORDS IN USE"
2040 FORN =1TOA:PRINT@32*N +32,

N$(N);"0:":PRINT@448,"":PRINT@
416,""

2050 PRINT@416,"(UP TO";A(N);
"CHARACTERS) D ❑ ";:L1NEINPUTA$
(NR,N)

2060 1FA$(NR,N)=`"' AND N=1
THENN=A:G=1:GOT02080

2070 A$(NR,N) = LEFT$(A$(NR,N),
A(N)):PRINT@32*N + 45,A$(NR,N)

2080 NEXT
2090 IFG =1 THEN 2160
2100 C= NR:FORF=1T0150:NEXT:

IFNR =1 THEN2150
2110 1FA$(C,1)> = AS(C -1,1) THEN2150
2120 FORN=1TOA:X$=A$(C,N):

A$(C,N) = A$(C - 1,N):
A$(C-1,N)=X$: NEXT: C=C-1

2130 IFC= 1 THEN2150
2140 GOT02110
2150 GOT02010
2160 NR=NR-1
2170 RETURN
2180 CLS3:PRINT@235," ❑ FILE FULL ❑ "

;:FORG = 1T05:SCREEN0,1:FORF =1TO
500: NEXT

2190 SCREEN0,0:FORF=1T0500:
NEXTF,G:RETURN

3000 RETURN: REM TEMPORARY LINE
4000 RETURN: REM TEMPORARY LINE
5000 RETURN: REM TEMPORARY LINE
6000 D =1
6010 IFNR <1 THEN6170
6020 GOSUB8500
6030 PRINT@451,"fORWARDS ❑ ❑ El ❑

bACKWARDS ❑ ClEmENU ❑ CI aMEND
❑❑❑❑❑ dELETE
❑ D 	E pRINT";

6040 1N$=INKEY$:IFIN$=`"' THEN6040
6050 IN = INSTR(1,RS$,INS)
6060 ON IN GOTO 6080,6080,6090,6100,

6110,6120,6130
6070 GOT06030
6080 D=D+1:GOT06140
6090 D=D-1:G0T06140
6100 RETURN
6110 GOSUB3000:GOT06020
6120 GOSUB4000:GOT06010
6130 GOSUB10000:GOT06030
6140 IFD>NR THEND=1
6150 IFD<1 THEND=NR
6160 GOT06010
6170 CLS3:PRINT@233," ❑ FILE EMPTY1=1";

6180 FORG =1T05:SCREEN0,1:FORF = 1
T0300:NEXT:SCREEN0,0:FORF =1
TO300:NEXTF,G:RETURN

7000 AUDIOON:MOTORON:CLS:PRINT@
65,"POSITION TAPE THEN PRESS
ENTER";

7010 1N$=INKEY$:IFIN$< > CHR$(13)
THEN7010

7020 MOTOROFF:PRINT@129,"PLACE
RECORDER INTO RECORD MODE THEN
PRESS ENTER";

7030 1N$ = INKEMIFIN$ < >CHR$(13)
THEN7030

7040 PRINT:INPUT" E FILE NAME 1E1";FI$
7050 CLS6:PRINT@232,"SAVING ❑ ";Fl$;
7060 MOTORON:FORI = 1101000: NEXT
7070 OPEN"0", # -1,F1$
7080 PRINT # - 1,Fl$,R,A,NR
7090 FORN=1TOA:PRINT# -1,N$(N),

A(N):NEXT
7100 C=1
7110 1FA$(C,1)="" THEN7140
7120 FORN=1TOA:PRINT# -1,A$(C,N):

NEXT
7130 C=C+1:GOT07110
7140 PRINT# -1,CHR$(13):CLOSE

-1:RETURN
8000 CLS:PRINT@70,"ARE YOU SURE (Y/N)?
8010 1N$ =1NKEY$:IFIN$ < >"Y"AND1N$

< >"N" THEN8010
8020 IFIN$="N" THENRETURN
8030 AUDIOON:MOTORON:CLS:PRINT@65,

"POSITION TAPE THEN PRESS ENTER"
8040 1N$ =1NKEY$:IFIN$ < >CHR$(13)

THEN8040
8050 MOTOROFF:PRINT@129,"PLACE

RECORDER INTO PLAY MODE ❑ E ❑

THEN PRESS ENTER"
8060 1N$ =1NKEY$:IFIN$ < > CHR$(13)

THEN8060
8070 IFR > 0 THENRUN9210
8080 INPUT" ❑ NAME OF FILE";FI$
8090 CLS7:PRINT@231,"SEARCHING E";
8100 OPEN"I",# -1,F1$
8110 INPUT# -1,F1$
8120 PRINT@231,"E FOUNDED";

Fl$;" ❑ ";
8130 INPUT# -1,R,A,NR
8140 DIMA(A),N$(A),A$(R,A)
8150 FORN=1TOA:INPUT# -1,N$(N),

A(N):NEXT
8160 C=1
8170 IFEOF(-1) THEN8200
8180 FORN = 1TOA:INPUT# - 1,A$(C,N)
8190 NEXT:C= C+1:GOT08170
8200 CLOSE # -1:RETURN
8500 CLS:PRINT@0,"RECORD NUMBER";

D:FORN=1TOA:PR1NT@32*N+32,N$(N);
" ❑ :";TAB(13);A$(D,N):NEXT:RETURN

9000 CLS4:PRINT@70,"ARE YOU SURE
(YIN)?";

9010 1N$= INKEMIFIN$ < >"Y"AND1N$
< >"N" THEN9010

9020 IFIN$="N" THENRETURN
9030 CLS:END
9200 GOSUB1040:GOT09220
9210 GOSUB8080
9220 B$ = CHR$(128):RS$ = "FE BMADP":

GOT030
10000 PRINT@451," ❑ ❑ ❑ CHECK

PRINTERE 	D ❑ 0 111cONTE1";
10010 PRINT@480," ❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑❑ D ❑
❑❑ EDDE ❑ ";

10020 1N$=INKEY$:IFIN$="" THEN10020
10030 1F1N$ < >"C" THENRETURN
10040 FORY = OTOA + 4:FORX= 01031:P=

PEEK(1024 + X + Y*32):IFP > 95AND
P<127 THENP=P-64

10050 IFP>OANDP<27 THENP=P+96
10060 IFP = 0 THENP = 32
10070 PRINT# -2,CHR$(P);:NEXT:PRINT

-2,CHR$(13);:NEXT
10080 FORN=1T03:PRINT# -2,CHR$(13):

NEXT
10090 RETURN

Disc users should delete lines 3, 8 and 8004.

1MODE7:M%= 0:N% =1
20NERRORGOT013000
3*OPT1,1
4HIMEM = PAGE + &3000
5DIMA(8),N$(8),TRL(8)
6VDU23;8202;1;0;0;0;0;
78%= HIMEM +1
8*OPT3,6
30CLS:PRINT"" ❑ ❑ ❑ ❑ ❑ ❑ MAIN MENU"
40PRINT""LI ❑ ❑ ❑ ❑ D1 :-Open a file"
50PRINT- 1111110 	❑ 2 :-Enter a record"
80PRINT'" ❑ 	1111111113 :-View records"
90PRINT"`111 	 :-Search option"
100PRINT" ❑ LEI ❑ E11115 :-Save file"
110PRINT"` 	El 0006 :-Load file"
115PRINT"`E ❑ ❑ 	❑ 7 :-Quit program"
120PRINT- 111 ❑ ❑ [11 ❑ III Select option

number"
130G =GET-48:1F G <1 OR G >7 THEN 130
140IF M%= 0 AND (G >1 AND G <6) THEN

130
1451F G< >7 THEN 148
146CLS:PRINTTAB(13,12)"Are you sure ?":

G = GET AND &5F
1471F G=89 THEN END ELSE 30
1480N G D GOTO 150,160,170,180,190,200
150PROCNEWFILE:GOTO 30
160PROCENTER:GOTO 30
170PROCVIEW:GOTO 30
180PROCSEARCH:GOTO 30
190PROCSAVE:GOTO 30
200PROCLOAD:GOT030

1000DEF PROCNEWFILE
1005CLS:PRINT"`Are you sure ?"
1010G = GET AND &5F:IF G< >89 THEN

1110
1015N% = 1:R% = 0
1020CLS:PRINT"Starting new file"
1040PRINT""How many fields do you want (1

TO 8)"
1050A=GET-48:IF A<1 OR A>8 THEN

1050
1058FOR N=1 TO A
1059PRINT"`Name of field E ";N;"

PROCINPUT(10):IF $B%= ""
TH EN PROCIN PUT(10)

1060N$(N)=$B%
1065PRINT"`What is the max length of

field CI ";N;" ❑ ";
10751NPUTA(N):IF A(N) > 27 OR A(N) <1

THEN 1075
1078TRL(N)= R%:R%= A(N) +1 + R%
1090NEXT:IFR%<11 THEN R%=11
1100M%=INT((&7C00— HIMEM)/R%):

PRINT" "You can use up to ❑ ";M%;
" El records": D% =IN KEY(300)

1110ENDPROC
2000DEF PROCENTER
20021F N%= M% + 1 THEN CLS:PRINT"`File

full":G=INKEY(300):GOTO 2130
2003Q= 0:CLS:PRINT"You have used ";

N% — 1;" ❑ out of ❑ ";M%;" ❑ records"
2007PRINT"`Press RETURN for MAIN MENU or

continue 	to enter files"
2010FOR N=1TOA:PRINTTAB(0,3+ N*2)

N$(N); "Ilk"
2020PRINTTAB(0,23)STRING$(27," 111")TA B

(0,23);:PROCINPUT(A(N))
2021PRINTTAB(13,3 + N*2);$B%
2022IF ASC($B%) = —1 AND N=1 THEN

N= A:Q=1:GOTO 2030

Program alterations
for the Electron

A couple of alterations have to be made
to this program to get it to run on the
Electron. Electron owners will have not-
iced in Line 1 that there is no Mode 7 on
their computer. Use Mode 6 instead. So
Line 1 should read:
1 MODE6:M%= 0:N% = 1
Then add these lines:
9004 IF G=67 THEN VDU2
9025 IF G=67 THEN VDU3
Line 9500 should be replaced with:
9500 DEF PROCPRINTER
And add:
9503 PRINT"`Check printer —

C(ontinue)":G = GET AND &5F:IF
G < > 67 THEN 9540

9510 PROCVDU
In Line 1100 change &7C00 to &6000

2025$(8%+ N%*R%+TRL(N))=$B%
2030NEXT
20351F Q=1 THEN 2130
2037FOR T=1 TO 2000:NEXT
2040N%=N%+1
20701F N%=2 THEN 2000
2080G= N%— 1
2090X= B%+G*R%:Y= B%+ (G —1)*R%:IF

$X> =$Y ❑ THEN 2000
2100FOR T=1 TO A:$B%=$(X+TRL(T))

:$(X + TRL(T)) = $(Y + TRL(T)):$(Y +
TRL(T))=$B%:NEXT

2110G=G-1:IF G=1 THEN 2000
2120GOT02090
2130ENDPROC
3000DEF PROCAMEND
3190ENDPROC
4000DEF PROCDELETE
4090ENDPROC
5000DEF PROCSEARCH
5100ENDPROC
6000DEF PROCVIEW
6002IF N%=1 THEN ENDPROC
6005D% = 0:C = 1:Q= 0
6010REPEAT
6020D%= D%+C
6023IF D%> N%— 1 THEN D%=1
60251F D%<1 THEN D%= N%— 1
6030PROCVDU
6035PROCKEY
60371F N%<2 THEN Q=1
6040UNTIL Q=1
6050ENDPROC
7000DEF PROCSAVE
7002CLS
7003PRINT"File's name ? ❑ ❑

❑❑❑❑❑❑❑❑❑ ";
TAB(14,0);:PROCINPUT(10)

7004PRINT"
7010IF LEN($B%) <1 THEN 7003
7030X = OPENOUT $B%
7035PRINT"Saving information now"
7040PRINT#X,M%,N%,A,R%
7050FOR N=1 TO A:PR1NT#X,N$(N),

A(N),TRL(N):NEXT
7055Y = B%+ R%:Z = B%+ R%* N%
7060FOR T=Y ❑ TO Z
7070BPUT# X,?T
7080NEXT
7090CLOSE # X
7100ENDPROC
8000DEF PROCLOAD
8002CLS
8003PRINT"Load which file ? ❑ ❑ 111 111

00000E10 111";TAB(18,0);:
PROCINPUT(10)

8004PRINT""PRESS PLAY ON RECORDER"
8007X = OPENIN $.B%
80101NPUT#X,M%,N%,A,R%
8015B%= HIMEM + 1
8020FOR N=1 TO A:INPUT# X,N$(N),

A(N),TRL(N):NEXT
8025Y = B%+ R%:Z= B%+ RVN%
8030F0R T= YEITO Z
8040?T= BGET# X
8050NEXT
8060CLOSE # X
8065VDU13:PRINT""LOADED CORRECTLY":

G$ = INKEY$(300)
8100ENDPROC
9000DEFPROCVDU
9003CLS
9005PRINT"Record number 111";D%'
9010FOR S=1 TO A:PRINTK(S);"

TAB(13);$(B%+ DVR%+TRL(S))
9020NEXT
9030PRINT""F(orward)1111110111C11118(ack)

Li ❑ ❑ ❑ ❑ ❑ ❑ ❑ M(enu)""A(mend)
CI CI CI CI CI CI D(elete) CI CI DODD
P(rinter)"

9035ENDPROC
9037DEF PROCKEY
9040G =GET AND &5F
90421F G=70 OR G=0 THEN C=1:GOTO

9100
90441F G=77 THEN Q=1:GOTO 9100
9045IF G=80 THEN PROCPRINTER:

GOT09040
90471F G = 65 THEN PROCAMEND:GOTO

9100
90501F G=66 THEN C= —1:GOTO 9100
90551F G=68 THEN PROCDELETE:

GOT09100
9060GOTO 9040
9100ENDPROC
9500DEF PROCPRINTER:PRINT"`Check

printer—C(ontinue)":G = GET AND &5F:IF
G < >67 THEN 9540 ELSE VDU2:FOR
Y = 0 TO A*2+ 3:FOR X = 0 TO 39:VDU1,
?(&7C00 + Y*40 + X):NEXT:VDU13:NEXT:
VDU3

9540VDU11:PRINTSTRING$ (40," I=1 "):
VDU11,11,11

9550ENDPROC
12000DEF PROCINPUT(X)
12010$B% =`"':FOR T=1 TO X+1
12020K = GET
12030IF K=127 AND T>1 THEN T=T-1:

VDU 127:$B%= LEFT$($B%,T— 1):
GOT012020

120501F K=13 THEN T=X+1:GOT012100
12060IF K< >13 AND T=X+1 THEN

12020
120701F K<32 OR K >126 THEN12020
12080$B%=$B%+CHR$(K)
12090VDU K
12100NEXT:ENDPROC
130001F ERR =17 THEN 30
130101F ERR >215 AND ERR <224 THEN

PRINT""FILE HANDLING ERROR":FOR
T=1 TO 7500:NEXT:GOT030

13050REPORT:PRINT:END

Arcade-type games rely on the
player being able to control events
on screen. Here we show you how
to control movement, fire missiles
and integrate them into a game.

Games like Space Invaders would be awfully
dull if the laser base movement or firing
couldn't be controlled in some way. Key-
board control of this type is a facet of even the
simplest of arcade-type games, and so it is
important to grasp the principles if you intend
writing your own.

The first step is to get the computer to react
when you press a key.

DETECTING A KEYPRESS
In principle, all home computers use the same
method of detecting a keypress. In detail, they
vary quite widely.

a a IA !HI
Whenever the Sinclairs, Dragon or Tandy find
the function IN KEY$ in a program they scan the
keyboard to see if a key is being pressed. Here
is a short program using INKEY$:

S5
20 CLS
30 IF IN KEY$ = "" THEN GOTO 30
40 PRINT AT 11,14;"OUCH"

30 LET A$ = INKEY$: IF A$ =
THEN GOTO 30

0 PRINT@ 269, "OUCH"

Run the program and then press any key
except 'CAPS SHIFT! or SYMBOL SHIFT! (on the
Sinclairs) or !BREAK! or ISHIFTI (on the
Dragon or Tandy). The machine will display
`OUCH' in the middle of the screen. The
program works like this:

Line 20 clears the screen. Line 30 makes
the computer wait until a key is pressed before
continuing with the program. Note that there
is no space between the inverted commas.
Because of this, Line 30 means: `If INKEY$
= nothing, or if no key is being pressed,

check again'. It is important to have the
IF . . . THEN GOTO 30 because otherwise the
computer would check only once whether a
key was being pressed, and then only for a
fraction of a second.

As soon as a key is pressed INKEY$ is made
equal to that key. For example, if 3 is pressed
1NKEY$ = "3". And this is enough to make
Line 40 display 'OUCH!!' on the screen.

■ DETECTING KEYPRESSES
■ FIRING MISSILES
■ CONTROL A MOVING

GRAPHIC
■ BUILDING BLOCKS FOR

ARCADE-TYPE GAMES

■ DESTROYING AN 'ALIEN'
■ MISSILE BASES
■ USING AN AUTO-REPEAT
■ GET$ AND INKEY$
■ PLOTTING RANDOM TARGETS

In most games you have to press a certain
key to move a tank, spacecraft or whatever. If
you change Line 40 you will see how this is
done. On the ZX81, use capital D, delete the
:STOP and add 45 STOP:

5S
40 IF 1NKEY$ = "d" THEN PRINT AT

11,9;"MMM, THAT'S NICE"
45 STOP
50
19_=

 PRINT
n

 AT 11,14;"OUCH!!"

40 IF A$ = "D" THEN PRINT@
264,"MMM, THAT'S NICE" ELSE PRINT@
269, "OUCH!!"

Line 40 checks to see if the D key has been
pressed; in other words is INKEY$ equal to D
or d? If it isn't, the Spectrum, which has no
ELSE statement, will ignore Line 40 and go on
to Line 50. (To find out why the STOP is
necessary, try omitting it!)

Two more things are important in this
program. The first is that the "D" or "d"
must be in quotation marks, or the computer
might mistake it for a variable. The second,
on the Spectrum only, is that you normally
need a lower case "d", not a capital. Other-
wise you would have to press !CAPS SHIFT'
and D to make it work.

El
On the Acorn computers you can use either
GET$ or INKEY$ to see if a key is being pressed.
The main difference between them is that
GET$ will halt the program and then wait, for
ever if necessary, until you press a key,
whereas with INKEY$ you can detect a key at
any time while a program is actually
RUNning—an essential feature in many games
programs.

Here is the short program using GET$ to
surprise the unwary:

20 CLS
30 key$ = GET$
40 PRINT TAB(17,13) "OUCH!!"

Type this in and RUN it, then press any of the
character keys.

It works like this. Line 30 waits for a key to
be pressed and puts the character into key$—
it remembers it, but doesn't PRINT it on the
screen. The program then goes to Line 40
which PRINTs the word 'OUCH!!' in the centre
of the screen.

This program will react to any key, but
usually in a game you want different keys to
do different things. To detect a specific
keypress, all you do is change Line 40 to:

40 IF key$ ="D" THEN PRINT TAB(11,12)
"MMM, THAT'S NICE" ELSE PRINT
TAB(17,13) "OUCH!!"

Line 40 checks to see if the character it has
stored in key$ is equal to "D". If it is, it PRINTs
`MMM, THAT'S NICE', but if any other key is
pressed it PRINTs 'OUCH!!'

0 0
The GET statement can be used by the
Commodore machines to detect each keyboard
press. This short program shows how GET is
typically used to do this:

20 PRINT "0"
30 GET A$: IF A$ = "" THEN GOTO 30
50 PRINT TAB (17) "OUCH!":END

RUN and reRUN the program to see that all
keypresses complete the program by display-
ing 'OUCH' on the screen—exceptIRUN/STOPI,
'SHIFT! and the 'Commodore' key.

Line 20 of the program clears the screen.
Line 30 with the GET statement is set to accept
a keypress. The quotation marks with nothing
between them mean: 'if no key is pressed'. In
this case, the line doubles back on itself and
waits for a key to be pressed before
continuing.

Line 50 then displays 'OUCH!' on the
screen, and the program ends.

In a typical game you may be asked to press
a certain key to indicate choice from a menu
selection, or to move a frog, laser base or
whatever. By adding another line to the
program you can specify which key has to be
pressed for the program to continue in a
particular way:

40 IF A$ = "D" THEN PRINT TAB(12) "MMM,
THAT'S NICE":END

Line 40 is reached after any keypress. It
checks if the key responsible was the D key,
completing the PRINT instruction if it was.
Otherwise the program skips to the next line.
(Why is the END necessary? Omitting it will
show you!)

FIRING A MISSILE
Now you can see how from detecting a
specific keypress using IF INKEY$ = "key" it
is a short step to firing a missile or moving a
missile base. This program fires a missile
from a base at the bottom of the screen when
the F key is pressed:

1U: Iiii
20 CLS
30 PRINT@ 397," # # # "

40 LET K$ =1NKEY$:IF K$ = "" THEN
GOTO 40

50 IF K$ = "F" THEN LET M = 334 ELSE
GOTO 40

60 PRINT@ M,"T"
70 PRINT@ M + 32," El "
80 LET M = M — 32
90 IF M > 0 THEN GOTO 60
100 GOTO 20

Line 30 PRINTS a missile base made up of three
hash marks (#) on the lower part of the screen,
starting at position 397.

In Line 40 the LET K$ = INKEY$ is very
important because you want to check the
keypress several times during the program. In
fact this program wouldn't work without it!
The computer only remembers the value of
INKEY$ for a split second—if you're not quick
enough checking INKEY$ the computer forgets
that a key has been pressed. You can make the
computer remember the keypress, though, by
calling the keypress K$, and checking K$ later
in the program.

Line 50 checks to see if F was pressed, and
if F was not pressed, continues to scan the
keyboard by going back to Line 40. M is the
position of the missile after it has been fired.

Line 60 displays the missile and Line 70
blanks out the previous position of the
missile.

Line 80 subtracts 32 from the missile's
position so that the missile moves up one line
every time it is PRINTed. (The reason for
subtracting 32 is that there are 32 columns
or character spaces on each line of the
computer's screen.)

Line 90 stops the computer trying to PRINT
the missile at a position not on the screen,
which would give an error message. The
screen starts at M = 0, and the computer
cannot PRINT at a position which is less than
zero. When M = 0, the program reRUNS.

eri411•MI a

This program fires a missile when f is pressed.
On the ZX81, use capitals throughout, and an
asterisk instead of the arrow in Line 60.

20 CLS
30 PRINT AT 21,14;"6E p"
40 IF INKEY$ ="" THEN GOTO 40
50 IF INKEY$ < > "f" THEN GOTO 40
55 LET y = 20
60 PRINT AT y,15;"T"
70 LET y=y-1
75 PAUSE 1
80 PRINT AT y + 1,15;"
90 IF y>0 THEN GOTO 60
Line 30 uses the low resolution ROM
graphics to display the missile base.

Line 40, as before, makes the Spectrum

wait until a key is pressed.
Line 50 checks if the f-key has bee!

pressed. If it was, the start position of di,
missile is set. This is on the twentieth screet
line, one above the missile base.

Line 40 makes the computer scan th ,
 keyboard again if any key other than f ha

been pressed.
Line 60 displays the missile on the screen

The Spectrum character is an up arrow and i
obtained by pressing 'SYMBOL SHIFT and H.

Line 80 blanks out the previous position o
the missile.

Line 70 subtracts 1 from y, which is the hill
coordinate of the missile position, thus mov.
ing the missile up one screen line.

Line 90 stops the missile going off th(
screen (when it reaches the top line, the
coordinate is 0).

Fl
This program fires a missile when F
pressed:

20 CLS
30 PRINT TAB(19,20)" # A #"
40 LET K$=GET$
50 IF K$="F" THEN M=19 ELSE GOTO 40
60 PRINT TAB(20,M)" A "

70 PRINT TAB(20,M +WO"
80 LET M = M —1
90 IF M > 0 THEN GOTO 60
100 GOTO 20

Line 30 displays the shape of the missile
base on the screen.

Line 40 waits for a keypress. Line 54
checks if F was pressed, and if it was, sets th(
start position of the missile. If F hasn't beer
pressed the Acorn keeps waiting.

Line 60 displays the missile, and Line 7Q
blanks out the previous missile position.

Line 80 subtracts 1 from the missile po-
sition so that the missile appears to move up
the screen.

Line 90 loops the program until the missile
reaches the top of the screen, and then Line
100 reRUNs the program.

This program fires a missile when F ie
pressed. On the Vic 20, change 18 to 8 one
omit two Ms in Line 30. In Line 50, use 471
not 939. In Line 70, use 7680 instead of 1024.
38400 for 55296, and N,0, not N,1. Use 7680.
not 1024, in Line 80, and 22 instead of 40 it
Lines 80 and 90.

20 PRINT "0"
30 PRINT TAB(18) "giggAggigigggigg

gggggggigEgglgigigggggg
glgg6T6"

40 GET K$: IF K$="" THEN GOTO 40
50 IF K$ ="F" THEN N=939 : GOTO 70
60 GOTO 40
70 POKE 1024+ N,30 :

POKE 55296+ N,1
80 POKE 1024+ N + 40,32
90 N = N — 40
100 IF N > 0 THEN GOTO 70
110 IF N <0 THEN GOTO 20

Low resolution ROM graphics are used to
form a missile base at the bottom centre of the
screen (Line 30).

Lines 40, 50 and 60 effectively cause the
program to wait until the F key is pressed,
triggering the missile when it has been, and
giving a value to N which is the position of the
missile after it has been fired.
Line 70 PRINTS the missile, Line 90 moves
it up a line at a time, and Line 80 blanks out
the previous position to create the illusion of
movement.

Lines 100 and 110 check that the missile is
within the screen area, restarting when it no
longer is so.

MOVING AROUND THE SCREEN
As it stands, the missile base program is rather
boring, but adding side to side movement to
the base improves matters a little. Let's look
at how the base itself can be moved:

41A
20 CLS
30 LET P=397
40 PRINT@ P,CHR$(143)+CHR$ (140) +

CHR$(128) + CHR$(140) +
CHR$(143)

50 LET K$=INKEY$:IF K$="" THEN
GOTO 50

60 IF K$="L" THEN LET P= P-1:
GOTO 90

70 IF K$="R" THEN LET P= P+1:GOTO 90
80 GOTO 50
90 IF P<384 OR P > 411 THEN GOTO 50
100 GOTO 40

Line 30 sets the start position of the missile
base, and Line 40 displays the missile at that
position.

Line 50 scans the keyboard as before,
making the computer wait until a key is
pressed before continuing.

Line 60 checks if L has been pressed, and if
it has, moves the base one space to the left by
subtracting 1 from the number that sets the
position of the base.

Line 70 checks if R has been pressed, and
changes the base position by adding 1.

Line 90 checks if the program is telling the
computer to PRINT the base off the screen—if it
is, the program goes back to Line 50.

Can I choose any keys to operate
a game with?
Yes—all you have to do is to change the
letters in your INKEY$ or GET$ lines. But
beware: what looks logical sometimes
works very badly in practice. For
example L, R, U and D for left, right, up
and down are impossibly awkward. If
your machine has a space bar, this is
often handy as a fifth key, especially
for 'firing'.

This program moves a missile base around
the screen. On the ZX81, type this entirely in
capital letters:

30 CLS
40 LET x =15
50 LET y=13
60 PRINT AT y,x;"6 op"
70 IF 1NKEY$ = "" THEN GOTO 70
80 LET lx=x: LET ly=y
90 PRINT AT ly,lx;" ❑ ❑ ❑ "
100 IF 1NKEY$ ="q" THEN STOP
110 IF INKEY$="p" THEN LET y= y —1
120 IF 1NKEY$ = "I" THEN LET y = y +1
130 IF 1NKEY$= "z" THEN LET x= x-1
140 IF 1NKEY$ = "x" THEN LET x= x +1
150 IF x <1 OR x > 29 THEN LET x=lx
160 IF y<1 OR y>20 THEN LET y=ly
170 GOTO 60

Lines 40 and 50 set the start position of the
missile base, 13 lines from the top and 15
spaces from the left. Line 60 displays the base
pn the screen.

Line 70 makes the Spectrum wait until a
key is pressed.

Lines 80 and 90 are perhaps the most
iifficult to understand. But what they do, in
effect, is to make a row of three spaces follow
:he missile base around the screen. Because
Line 60 always comes before Line 90 in the
loop, the base in its new position is always
PRINTed before the old position is cleared.

Line 100 terminates the program if the
letter q is pressed (q for 'quit').

Line 110 checks if p has been pressed, and
if it has, subtracts 1 from the y value. The
Area this has is to move the base one 'space'
ip the screen.

Lines 120 to 140 operate similarly, Line
120 moving the base down if I is pressed, Line

130 moving the base left if z is pressed, and
Line 140 moving the base right if the x-key is
pressed.

Line 150 prevents the base being PRINTed
off the edge of the screen.

Line 160 checks that the program is not
trying to PRINT the base off the top or bottom
of the screen. If this is the case making y = ly
prevents this happening.

Line 170 completes the loop, causing the
keyboard to be scanned and the process to
start again.

II
This program will move the missile base
around the screen:

20 VDU 23;8202;0;0;0;
30 CLS
40 X =19
50 Y=13
60 PRINT TAB(X,Y)"# A #"
70 KEY$ = G ET$
80 LX = X: LY = Y
90 PRINT TAB(LX,LY)" El ❑ ❑ "
100 IF KEY$="Q" THEN END
110 IF KEY$="P" THEN Y= Y-1
120 IF KEY$ ="L" THEN Y=Y+ 1
130 IF KEY$="Z" THEN X=X-1
140 IF KEY$ = "X" THEN X= X + 1
150 IF X<1 OR X > 36 THEN X= D(
160 IF Y<1 OR Y>23 THEN Y=LY
170 GOTO 60

When the program is RUN you will see the
base positioned in the middle of the screen.
Use Z and X to move it left and right, and P
and L to move it up and down. Type Q to quit
the program.

The program works like this: Line 20 turns
off the flashing cursor. Lines 40 and 50 set the
start position of the base, and Line 60 displays

Why does my program crash
when a graphic reaches the edge
of the screen?
Probably, a number in one of the lines
which control the graphic's position on
the screen is too big. So re-check these
lines if you get any of the following
error reports: screen scrolling (Acorn),
illegal quantity (Commodore), FCC error
(Dragon), integer out of range 7
(Spectrum).

it. Line 70 waits for a keypress.
Lines 80 and 90 work in the same way as ir

the program for the Spectrum and ZX81 (set
previous page).

Lines 100 to 140 check which key has beer
pressed and act accordingly, either ending the
program or moving the base. Lines 150 anc
160 stop the base moving off the screen.

Line 170 returns the program to Line 0
which displays the base in its new position.

0 0
On the Vic, use 8, not 18, in Line 20. Omi
two Ms in Line 40, and use 18s, not 36s it
Line 90.

20 P=18
30 PRINT "0"
40 PRINT TAB(P) "gmggiggig

gigggigggggiggigEggrigigg
Mg916T61"

50 GET K$: IF K$ = "" THEN GOTO 50
60 IF K$ = "L" THEN P= P —1 : GOTO 90
70 IF K$ = "R" THEN P= P + 1 : GOTO 90
80 GOTO 50
90 IF P > 36 THEN P=36
100 IF P<1 THEN P=1
110 GOTO 30

The P in Line 20 sets the start position of the
missile base, and Line 40 displays the base al
that position. The keypress routine appears ir.
Lines 50, 60 and 70, checking to see if either L
or R keys have been pressed, subtracting 1
from P to move the base left, adding 1 to move
it right. The GOTO in Line 80 return!
to Line 50 if any other key is pressed.

Lines 90 and 100 check that the value of F
falls within the screen area, repeating the GE1
loop if it doesn't. Finally, Line 110 returns
the program to the missile base PRINTing line.

CREATING A GAME
You now have some building blocks from
which games can be constructed. The game
below shows one way of using them. On the
Tandy, use 247, not 223, in Lines 100 and 110.

20 CLS
30 FOR N =1 TO 100: NEXT N
40 LET PO= 430
50 LET B$=CHR$(143)+

CHR$(140) + CHR$(128) +
CHR$(140) + CHR$(143)

60 LET A= RND(30) + 64
70 PRINT@ A,"*"
80 LET LP = PO
90 PRINT@ PO,B$
100 IF PEEK(340) = 223 THEN LET

PO= P0-1

110 IF PEEK(338) = 223 THEN LET
PO = PO + 1

120 IF PO < 415 OR P0>444 THEN LET
PO= LP

130 LET K$ =IN KEY$
140 IF K$ = "F" THEN LET M = PO — 30 ELSE

GOTO 80
150 PRINT@ M,"T";
160 PRINT@ M + 32," 0 ";
170 LET M= M-32
180 IF M= A THEN GOTO 20
190 IF M > 0 THEN GOTO 150 ELSE PRINT@

M+ 32," El ";
200 GOTO 80

On the ZX81, type this entirely in capitals and
use an asterisk not an arrow, delete LET y = 21
and add 45 LET Y=21:
20 CLS
30 PAUSE 25
40 LET x =15
45 LET y = 21
50 LET B$="1116.60"
60 LET a= INT (RND*28) + 2
70 PRINT AT 2,a;"*"
80 LET xx = x
90 PRINT AT y,x;B$
100 IF 1NKEY$ = "z" THEN LET x= x-1
110 IF 1NKEY$="x" THEN LET x= x+1
120 IF x<0 OR x > 27 THEN LET x= xx
140 IF 1NKEY$ < > "t' THEN GOTO 80
145 LET m= y —1
150 PRINT AT m,x+ 2;"T"
160 PRINT AT m +1,x + 2;"111"
170 LET m = m —1
180 IF m=2 AND x+ 2=a THEN GOTO 20
190 IF m < > 1 THEN GOTO 150
195 PRINT AT m +1,x + 2;"
200 GOTO 80

15 VDU 23;8202;0;0;0;
20 CLS
30 FOR N=1 TO 200:NEXT N
40 LET X=19: LET Y=20
50 LET B$ = " 0 # # 0"
60 LET AX= RND(36) + 1
70 PRINT TAB(AX,3) "."
80 LET LX = X
90 PRINT TAB(X,Y);B$
95 LET K$ = GET$
100 IF K$="Z" THEN LET X = X —1
110 IF K$="X" THEN LET X=X+1
120 IF X<0 OR X>35 THEN LET X= LX
140 IF K$="F" THEN LET M=19 ELSEGOTO E
150 PRINT TAB(LX+ 2,M) " A "
160 PRINT TAB(LX+ 2,M +1) "0"
170 LET M= M —1
180 IF M=3 AND LX+2=AX

THEN GOTO 20

190 IF M > 0 THEN GOTO 150 ELSE PRINT
TAB(LX+2,M+1) "1 1"

200 GOTO 80

0_ 0

On the Vic, replace Line 15 with 15 POKE
36879, 29. Change the 16 in Line 40 to 8, and
the 34s in Lines 60 and 105 to 16. Omit two
jigs from Line 50.

15 POKE 53280,5:POKE 53281,1
20 PRINT "0"
30 CLR
40 LET P= 16:LET A=1
50 LET D$="gggigggaggggg

gg gg gi gg gg gg gg gg gg gg gg
gg gg gg gg"

60 LET A= INT(RND(1)14) +3
70 PRINT "I§"TAB(A)" "
80 PRINT "I§I"TAB(P)Dr 	t p 0"
90 GET K$:IF K$ = "" THEN 90
95 IF K$ = "Z" THEN P = P —1
100 IF K$="X" THEN P= P+ 1
105 IF P>34 THEN P=34
110 IF P<1 THEN P=1
115 IF K$ = "F" THEN P1 = P:D = 22:

GOTO 130
120 GOTO 80
130 PRINT 1§1" TAB(P1);
140 PRINT LEFT$(D$,D)" El f gg MI

❑ ":D = D —1

150 PRINT "g" TAB(P1);
160 PRINT LEFTVD$,D)"111/ ❑ gg UI

11 ":D = D - 1
170 IF D>0 THEN 130
180 IF P1 =A-2 THEN 20
200 GOTO 80

When you RUN this you will see a star near the
top of the screen. The Z and X keys move the
missile base left and right, and the F key fires a
missile to destroy the star.

Think of the program as having three
sections: up to Line 70, Lines 80 to 120, and
Lines 130/140 to 200.

Lines 130/140 to 200 are similar to the
earlier missile firing program for your ma-
chine. The variables have been changed, along
with the GOTOs, but the only addition is Line
180. This simply looks to see if the missile and
the star are in the same place. If they are, the
program restarts.

The middle section, Lines 80 to 120, is a
shortened version of the 'moving around the
screen' program for your machine. The
Dragon and Tandy lines are borrowed from
both 'moving missile base' and from 'better
movement' (see below). The PEEKS in the
program check if Z or X have been pressed and
alter PO as appropriate.

The first section of the program, up to Line
70, performs a variety of functions. In the

Acorn program Line 15 turns off the flashing
cursor. In all programs, Line 30 introduces a
short pause before the program continues.
This is important when Line 180 completes
the loop at the end of the program. Lines 40
and 50 set the start position of the missile base
and define its shape (on the Commodore, the
shape is set by Line 80). Lines 60 and 70
choose a place for the star and display it.

BETTER MOVEMENT
Having to press the 'left' or 'right' key each
time you want a graphic to move, as you do on
the Dragon, Tandy and Commodore, is rather
laborious. So it is usual to build in an auto-
repeat facility.

0 0

On the Commodore this is done by using a
single POKE, so add this line to your program:

10 POKE 650, 128

In fact, you can use any value of 128 or
higher. To cancel auto-repeat, POKE the same
location, 650, with the value 127.

IU1
Continuous movement is difficult using
INKEY$, and it is not possible to write smooth
games this way. But, there is a way round the
problem which is illustrated in the following
program. On the Tandy, use 247 in place of
223 in Lines 70 and 80; 251, not 239 in Line
90; 253, not 247, in Line 100.

20 CLS
30 LET BL$ = CHR$(128)
40 LET PO = 238
50 PRINT@ PO,BL$
60 LET LP = PO
70 IF PEEK(340) = 223 THEN LET

PO = PO —1:GOTO 120
80 IF PEEK(338) = 223 THEN LET

PO = PO +1:GOTO 140
90 IF PEEK(338) = 239 THEN LET

PO= PO — 32:GOTO 150
100 IF PEEK(342) = 247 THEN LET

PO= PO + 32:GOTO 150
110 GOTO 70
120 IF (LP AND 31) = 0 THEN LET PO= LP
130 GOTO 150
140 IF (PO AND 31) = 0 THEN LET PO = LP
150 IF PO > 510 OR PO < 0 THEN LET

PO = LP:GOTO 70
160 PRINT@ LP," El ";
170 PRINT@ PO,BL$;
180 GOTO 60

When you RUN the program you will see a
block positioned in the centre of the screen.
The program will move the block from side to
side and up and down.

A close look at the two keywords-
GOTO and GOSUB—which can carry
out much of the work of steering
the course of a program by creating
forwards and backwards jumps

One of the most fundamental statements in
BASIC programming is GOTO. Its function is
to alter the pattern of a program so that
instead of simply executing the program lines
in numerical order, the computer jumps to
the line specified in the GOTO statement.

Although it sometimes appears on the
screen as two words, GOTO is normally keyed
in as one. On the Spectrum, you press the

GOTO key. On other machines you type in
GOTO as one word with no space between the
GO and the TO.

The word GOTO is always followed by the
number of the line you want to jump to.
Sometimes, although not on the Commodore
machines, this number can be represented by a
[etter—A, say—which assumes a numerical
value when the program is RUN.

GOTO statements allow you to jump back-
wards, creating a loop. They are rather like
those formed by FOR ... NEXT loops (see page
16) but there is no limit to the number of
times you go round it. This simple program,
for example, calculates the length of the
hypotenuse of a right-angled triangle. (Note
how A and B values are squared here—it's
quicker than using A 1 2 and B 1 2.)

■ 	GOTO AND GOSUB IN
PRACTICE-PROGRAMS

FOR CALCULATING, NAME
GUESSING AND DICE

THROWING

■ WHEN AND HOW TO CREATE
FORWARDS AND BACKWARDS

PROGRAM JUMPS
■ USE IN COMPLEX BRANCHES
■ SPEEDING UP SUBROUTINES

■ USING PROCEDURES
■ AVOIDING THE BAD

PROGRAMMING PITFALLS
OF GOTO

10 PRINT "Length of sides A,B, in centimetres"
15 INPUT A,B
20 LET C= SQR (A*A + B*B)
30 PRINT "The length of side C is ❑ ";

C;" ❑ centimetres."
40 GOTO 10

10 PRINT' "'Length of sides A,B, in cms"
15 INPUT a,b
20 LET c= SQR (a*a + b)
30 PRINT "The length of side C

" ❑ centimetres"
40 GOTO 10

0 	 14
10 PRINT "LENGTH OF SIDES A,B IN CMS"
15 INPUT A,B
20 LET C= SQR(A*A+ B*B)
30 PRINT "THE LENGTH OF SIDE C

IS";C;"CM"

40 GOTO 10

In Line 20, SQR (A*A+ B* B) means 'the
square root of A squared plus B squared, or
\/A2 +132--Pythagoras' formula for calculat-
ing the length of the hypotenuse of a right-
angled triangle. Line 30 PRINTS out its value.

This program will RUN over and over again
because, each time it gets to Line 40, the
GOTO statement sends it back to Line 10 again
and the program RUNs again. The only way
out of this cycle is to hit 1ESCAPEI, 'BREAK' or
RUN/STOP I, (or on the Spectrum, enter STOP
to an INPUT) or to switch the computer off and
start again.

FORWARD JUMPS
A GOTO statement can also be used to skip
forward over a block of program, as in this
coin-tossing program:

5 delay= INKEY(200):CLS
10 PRINT"'"I'M TOSSING THE COIN...";
20 FOR J =1 TO 3
30 PRINT ".";
40 delay= INKEY(100)
50 NEXT
70 IF RND(1)< 0.5 THEN GOTO 100
80 PRINT' "AND IT'S TAILS!"
90 GOTO 5
100 PRINT' "AND IT'S HEADS!"
110 GOTO 5 	 4

5 PAUSE 50: CLS
10 PRINT "I'M TOSSING

THE COIN...";
20 FOR j =1 TO 3
30 PAUSE 25
40 PRINT "."; 	 1
50 NEXT]
60 PRINT
70 IF RND <.5 THEN GOTO 100
80 PRINT "AND IT'S TAILS!"
90 GOTO 5
100 PRINT "AND IT'S HEADS!"
110 GOTO 5

5 FOR F=1 TO 500:NEXT F:CLS

10 PRINT "I'M TOSSING THE COIN...."
20 FOR J=1 TO 3
30 FOR F=1 TO 250:NEXT F
40 PRINT ".";
50 NEXT J
60 PRINT
70 IF RND(0)< .5 THEN GOTO 100
80 PRINT "AND IT'S TAILS!"
90 GOTO 5

100 PRINT "AND IT'S HEADS!"
110 GOTO 5

LO-
5 FOR D =1 TO 1000 : NEXT : PRINT "Er
10 PRINT "I'M TOSSING THE COIN...";
20 FOR J =1 TO 3
30 FOR D=1 TO 250: NEXT D
40 PRINT ".";
50 NEXT J
60 PRINT
70 IF RND(0) <.5 THEN GOTO 100
80 PRINT "AND IT'S TAILS!"
90 GOTO 5
100 PRINT "AND IT'S HEADS!"
110 GOTO 5

The RND in Line 70 gives you a random
number, selected by the computer, between 0
and 1. Here it forms part of the condition on
the GOTO statement. If the random number
selected by the computer is less than a half,
the computer jumps forward to Line 100. If not,
the computer will naturally execute the next
program line, Line 80—any other instruc-
tions on 70 would have been disregarded.

This condition means that Line 70 forms a
branch in the program. Either the computer
reads Lines 70, 80, 90 to display 'AND IT'S
TAILS!' or it reads Lines 70, 100, 110 to
display 'AND IT'S HEADS!'. It does this quite
randomly, by the flick of an electronic coin.

Lines 90 and 110 also contain GOTO state-
ments. Whichever branch the computer has
taken, these send it back to the beginning of
the program, Line 5, to start all over again.

Again, you will note that this program has
no end. The only way out of it is to hit
'ESCAPE', 'BREAK' or IRUN/STOP, or switch off.

MORE-COMPLEX BRANCHES
On Acorn computers and the Spectrum, the
GOTO statement need not be accompanied by
a natural number. A variable will do—GOTO
A, for example, or GOTO (100 + INT(RND*6)).
This means that the GOTO statement can give
a complex branch in your program, as in:

El
100 PRINT "Hello, what's your name?"
110 INPUT A$
120 GOTO (120 + RND(4)*10)
130 PRINT "That's a nice name, ❑ ";A$:

GOTO 170
140 PRINT "That's a funny name, ❑ ";A$:

GOTO 170
150 PRINT "Pleased to meet you, ❑ ";A$:

GOTO 170
160 PRINT "Hello ";A$;"1111'm your

computer "
170 END

a
100 PRINT "Hello, what's your name?"
110 INPUT a$
120 GOTO (130 + INT (RND*4)10)
130 PRINT "That's a nice name, ❑ ";a$:

GOTO 170
140 PRINT "That's a funny name, ❑ ";a$:

GOTO 170
150 PRINT "Pleased to meet you, ❑ ";a$:

GOTO 170
160 PRINT "Hello 0 ";a$;", ❑ I'm your

computer."
170 STOP

The GOTO statement in Line 120 gives a
random jump forward to any of the next four
lines, which are then executed. This is often
useful in games where, for example, you may
want a character to follow an unpredictable
course.

The GOTO 170 makes the computer skip
forward, missing out the intervening lines.
Note that Line 160 doesn't need a GOTO 17e
on the end of it, as the computer goes to Line
170 anyway, once Line 160 has been
executed.

This program RUNS only once, because all
the GOTOs instruct the computer to skip
forward, so no closed loops are formed. When
it gets to Line 170 it stops.

ON ... GOTO
On the Commodore, Dragon and Acorns
there is a near-equivalent—the ON ... GOTO
statement. This takes the form:

ON A GOTO 100, 200, 300, 400

When A = 1, the computer will go to the first
destination, Line 100. When A = 2, it will go
to the second, Line 200, and so on. Again this
allows a complex branch in your program and
turns the above program into:

1-111411H1
100 PRINT "HELLO, WHAT'S YOUR NAME?"
110 INPUT A$
120 ON RND(4) GOTO 130,140,150,160
130 PRINT "THAT'S A NICE NAME, 0";

A$:GOTO 170
140 PRINT "THAT'S A FUNNY NAME, El";

A$:GOTO 170
150 PRINT "PLEASED TO MEET YOU, 0";

A$:GOTO 170
160 PRINT "HELLO, 0 ";A$;", 0 I'M YOUR

COMPUTER"
170 END

100 PRINT "HELLO, WHAT'S YOUR NAME?"
110 INPUT A$
120 ONINT(RND(1)'5)GOTO 130,140,150,160

130 PRINT "THAT'S A NICE NAME, ❑ "
A$:GOTO 170

140 PRINT "THAT'S A FUNNY NAME, 0 "
A$:GOTO 170

150 PRINT "PLEASED TO MEET YOU, CI"
A$:GOTO 170

160 PRINT "HELL010" A$ ❑ I'M YOUR
COMPUTER"

170 END

GOOD AND BAD PROGRAMMING
The over-use of GOTO is considered bad
programming style. One reason is that even in
simple programs a GOTO statement that sends
you back to a preceding line can create an
endless loop which can only be escaped from
by use of the (ESCAPE, IBREAKI or IRUN/STOP
key—or by switching offl

But the main reason is that by allowing you
to jump backwards and forwards to any point
in the program on a whim, GOTO tends to
break up the program's logical structure. This
may not seem very important when you are
dealing with five- or ten-line programs, but it
can be vital when coping with 100- or 1,000-
line programs.

Good programming style demands that
programs are built up in logical modules, each
of which does one job. This helps when you
have to track down random faults that occur
when the program is RUNning. It helps you
to see what is going on when you read the
program and makes modifying the program at
a later date much easier.

USING GOSUB
The programming tool which largely replaces
GOTO in the sophisticated programmer's tool-
box is GOSUB. Again it is keyed in as one
word, and is followed by a line number.

GOSUB sends the computer to a subroutine
which starts on the line number specified. A
subroutine is simply a set of operations within
the program that can be split off into a
separate logical 'building block'. It is often
used when an operation has to be repeated
several times during a program. Instead of
writing out the same routine each time it
occurs in the program, the computer can
simply be directed to the subroutine.

The crucial difference between a GOSUB
and a GOTO is that at the end of a subroutine
the word RETURN must appear. On the Spec-
trum, you hit the key labelled RETURN to do
this. On the other machines, you must type in
RETURN before hitting the 'RETURN or
'ENTER] key. RETURN sends the computer back
to the program line following the GOSUB, or,
on the Spectrum to any statement following
GOSUB in the same line.

The following program simulates the

American game of craps. In the game a pair of
dice are thrown twice. Each time they are
thrown the total is noted. If the totals of the
two throws are the same the game ends; if not,
the dice are thrown again.

20 LET A=1
30 REM FIRST THROW
40 GOSUB 150
50 LET T1 =T
60 REM SECOND THROW..
70 GOSUB 150
80 LET T2 = T
90 IF Tl =T2 THEN GOTO 120
100 LET A=A+1
110 GOTO 40
120 PRINT "EQUAL SCORES OF ❑ ";T1;

"DINO";A," E TH ROWS"
130 END
140 REM SUBROUTINE.
150 LET D1 = RND(6)
160 LET D2 = RND(6)
170 LET T= D1 + D2
180 RETURN

Cz
20 LET A =1
30 REM ***FIRST THROW**
40 GOSUB 150
50 LET T1 =T

60 REM * — SECOND THROW" "
70 GOSUB 150
80 LET T2 = T
90 IF T1 =T2 THEN GOTO 120
100 LETA=A+1
110 GOTO 40
120 PRINT "EQUAL SCORES OF" T1 "IN" A

"THROWS"
130 END
140 REM ***SUBROUTINE***
150 LET D1 = INT(RND(X)*6 +1)
160 LET D2= INT(RND(X)*6 +1)
170 LET T= D1 + D2
180 RETURN

as
On the ZX81, type this entirely in capitals:

20 LET a =1
30 REM first throw
40 GOSUB 150
50 LET t1 =T
60 REM second throw
70 GOSUB 150
80 LET t2=T
90 IF t1= t2 THEN GOTO 120
100 LETa=a+1
110 GOTO 40
120 PRINT "Equal scores °fill ";t1;

" ❑ in ❑ ";a;" ❑ throws"
130 GOTO 200

140 REM subroutine
150 LET dl = INT (RND*6) + 1
160 LET d2= INT (RDN*6) + 1
170 LET T = d1 +d2
180 RETURN

The throw itself has to be performed twice, so
it is consigned to a subroutine consisting of
Lines 150 to 180. The GOSUB in Lines 40 and
70 sends the computer to Line 150 and the
RETURN on Line 180 sends it back to Line 50
if it came from Line 40, or Line 80 if it came
from Line 70. Line 140 just gives the name of
the subroutine but it is not good programm-
ing style to include REM statements in sub-
routines. As subroutines are often performed
many times, repeating the REM statement—
which doesn't actually do anything—is a
waste of time. So it is put on the line before the
subroutine starts.

Note the END statement in Line 130 of all
the programs except the Sinclairs'. If it
was not there, after Line 120 the computer
would run into the subroutine and display an
error message when it got to the RETURN in
Line 180, with no line to return to.

OUT OF RANGE LINE NUMBERS
As the Spectrum does not respond to an END
statement, GOTO followed by a number
beyond the range of the program is used

instead. In this case we have:

130 GOTO 200

When it gets there and finds that there is no
Line 200 it will assume that this is the end of
the program and display OK, ready to begin
again. This is better than using:

130 STOP

... for example, because when the Spectrum
hits a STOP statement it throws up an error
message. (In this case it would say: 9 STOP
statement 130:1. This might lead you to
believe that there was something wrong,
especially as Line 130 is not the last line of the
program—the subroutine follows it.)

But be careful when using GOTO followed
by an out-of-range number. After GOTO 200,
for example, the Spectrum will be left search-
ing through all the lines following. And if it
finds something on one of them it will
execute, or try to execute, whatever that line
tells it to do. So to be on the safe side it is best
to send the computer to the last possible line
of the program, that is Line 9999. So for
Spectrum users the convenient 'end' state-
ment is GOTO 9999 and on Line 9999 you
should put:

9999 REM END

so that there can be no confusion about
what you are doing.

BUILDING LAYERS
It is possible for one subroutine to call
another one—or even itself—so you can build
them up in layers. As the dice throwing here is
performed twice it could be made into a
subroutine within a subroutine by changing
the last few lines of the program so that they
look like this:

El 14 IA
150 GOSUB 190
155 LET D1 = D
160 GOSUB 190
165 LET D2 = D
170 LET T= D1 + D2
180 RETURN
190 LET D = RND(6)
195 RETURN

150 GOSUB 190
155 LET D1 = D
160 GOSUB 190
165 LET D2 = D
170 LET T = D1 + D2
180 RETURN
190 LET D = INT(RND(X)*6 + 1)
200 RETURN

On the ZX81, type entirely in capitals:

150 GOSUB 190
155 LET dl = d
160 GOSUB 190
165 LET d2 = d
170 LET T = d1 +d2
180 RETURN
190 LET d = INT (RND*6) + 1
195 RETURN

Here Lines 150 and 160 send the computer off
to the subroutine in Line 190 to do the dice
rolling, while Lines 155 and 165 make a
record of the two separate scores.

On the other hand, for brevity's sake, it was
actually unnecessary to perform the throwing
of the two dice separately. Except on the
Sinclairs, the whole of the subroutine could
have been compressed to:

150 LET T= INT(6*RND(1) +1) +
INT(6*RND(1) +1)

PROCEDURES ON THE BBC
BBC BASIC allows the use of procedures.
These are a bit like subroutines in that
they are separate sections of program that
are called from the main program. Unlike
subroutines, though, they can have mean-
ingful names such as PROCdrawtriangle, and
they are a lot more versatile.

Here's an example:

10 CLS
20 FOR month =1 TO 12
30 PRINT TAB(0,1)"Type in figures for

monthEl";month
40 INPUT N
50 PROCdrawgraph
60 PRINT TAB(0,2)" ❑ I=11=1"
70 NEXT month:END
90 DEFPROCdrawgraph
100 FOR X =1 TO N
110 PRINT TAB(X,month + 6)"*";
120 NEXT
130 ENDPROC

This program takes 12 figures, one for
each month, and displays them as a graph.
These figures could be amount of money
saved, number of Mars Bars eaten, or any
other amount that varies over the year. (As
it stands each figure has to be less than 39
to fit on the screen.)

The procedure — PROCdrawgraph — is
called 12 times, once for each month. Note
that PROCdrawgraph calls the procedure,
DEFPROCdrawgraph defines it and

Alternatively, use this version:

150 T = INT(6*FIND +1) + INT(6*RND + 1)

On some computers you may even find that:

150 T= RND (6) + RND (6)

will work. But a skilled Acorn, Dragon or
Tandy programmer could write the whole
crap-shooting program in two lines:

10 A = 0
20 D1= RND(6) + RND(6):D2 = RND(6)

+ 6:A=A +1:1F D1 = D2 THEN PRINT
"EQUAL SCORES OF ❑ ";D1;" ❑ IN ❑ ";
A;"THROWS": END ELSE GOTO 20

USING ON ... GOSUB
As with GOTO, the GOSUB statement can on
some computers be accompanied by a variable
instead of a natural number. And on others an
ON ... GOSUB statement can be used to the
same effect. These are used in more complex
programs where a branch has to be made to a
number of different subroutines.

ENDPROC returns to the main program.
You can also pass numbers or para-

meters to a procedure, so a single proce-
dure can be called with a different set of
conditions each time. The next program
uses one general procedure to print three
colourful lines at various positions.

10 INPUT "WHAT IS YOUR NAME",N$
15 IF LEN(N$) > 20 THEN GOTO 10
20 MODE 2
30 VDU 23;8202;0;0;0;
40 PROCdisplay(5,1,130,"M ER RY

CHRISTMAS")
50 PROCdisplay(12,11,140,N$)
60 PROCdisplay(20,1,130,"AND A HAPPY

NEW YEAR")
70 END
100 DEFPROCdisplay(row,ink,paper,

message$)
105 LOCALX,L
110 LET L= LEN(message$)
120 col = INT((20 L)/2)
130 COLOUR ink
140 COLOUR paper
150 PRINT TAB (col,row);message$
160 FOR X=0 TO L-1
170 PRINT TAB(col + X,row 	"*";
180 PRINT TAB(col + X,row +1) ''';
190 NEXT
200 ENDPROC
You can display any text in this way simply
by altering the parameters in the proce-
dure call.

UDG 64 change shape of/move
Acorn
Dragon
Spectrum
creation of
Acorn
Commodore
Dragon
Spectrum
definition of
grids
Acorn
Dragon
Spectrum

59
40

15
13,40

30
26-27

8-9,31-32

11,28,48

64

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

AMEND
AND
Animation

see games
Applications

hobbies' files

Basic programming
the FOR ... NEXT
loop
decision making
programmer's road
signs
think of a number

Binary
Brackets, use of
BREAK, Dragon

Cassette, choice of
Cassette recorders,

choice of
Christmas program,

Acorn
CHR$, use of

Acorn
Dragon

CLEAR
Dragon
Spectrum

CODE, Spectrum
Code numbers, Acorn
Craps program
Cursor, definition of

DATA
best systems to use
statements
Acorn
Commodore
Dragon
Spectrum

Decimal, conversions
from binary

Decisions
DEFPROC,

Acorn see procedures
Dice-throwing program
DIM, Dragon

ENDPROC, Acorn
ENTER
Error replies
ESCAPE, Acorn

Fields
Filing system program

Acorn
Commodore
Dragon
Spectrum

FOR... NEXT loop

Games, animation
Acorn 	 28-29
Commodore 	 30-31
Dragon 	 26-27
Spectrum 	 31-32
creation of
Acorn 	 58
Commodore 	 59
Dragon 	 58
Spectrum 	 58

	

16-21 	frog
Acorn 	 12
Commodore 	 15
Dragon 	 14
Spectrum 	 10
fruit machine 	 36
guessing
Acorn 	 4-5,34
Commodore 	 4-5,34
Dragon 	 3-4,34
Spectrum 	 3-4,34
routines
Acorn 	 11-12

	

25 	Commodore 	 14-15
Dragon 	 12-14
Spectrum 	 8-10
running man, Acorn 	28-29
tank
Acorn 	 11-12
Commodore 	 14-15
Dragon 	 13-14
Spectrum 	 10

GET$
Acorn,
Commodore 	 55,57,58

GOSUB
Acorn 	 62
Commodore 	 18
Dragon 	 62

	

45 	Spectrum 	 62-64
See ON... GOSUB

12 GOTO

	

14,43,44 	Acorn 	6,18-21,28,59-62

	

13,40,41 	Commodore 6,18-21,30,59,61-62

	

8-9,44-45 	Dragon 	6,18-21,30,59,61
Spectrum 	6,18-21,31,59,61-64

	

38,42,45 	See ON ... GOTO

	

33-37 	Graph-drawing program
Acorn 	 64

Graphics characters 	38-45

	

64 	Graphics, low resolution

	

41 	Dragon 	 26
see games animation,
movement, ROM graphics,
teletext, UDG

	

60
	Grid, of UDG, see UDG

11
36

	

7 	Hexadecimal, conversion
from binary 	38,42,45

	

46
	

Commodore 	 28-29

52-53

	

48-50
	

INKEY$

	

51-52
	

Dragon
	 54,55-58

	

50-51
	

IF... THEN

	

16-21 	statements
	 3,33-37

IF... THEN ...ELSE
INKEY

Acorn
Spectrum

INPUT
INT

Commodore
Spectrum

Keypress, detection of

LOAD command

Machine code programming
games graphics
memory, Commodore
speeding up games
routines

Menu
MODE, Acorn
Movement

Acorn
Commodore
Dragon
Spectrum

Nested loop, definition and
use of

NEW
Acorn
Commodore
Dragon
Spectrum

ON... GOSUB
ON ... GOTO
OPEN A FILE
Operands (operators)
OR

Parameters
PEEK
Pixels, Dragon
POKE

Commodore
Dragon

PRINT AT
Commodore
Dragon
Spectrum

PRINT TAB,
Acorn

PROC
see procedures

Procedures, Acorn
Program, basic

breaking into
line numbeis
punctuation of

PSET, Dragon

37 	0/M
pixels, Dragon

RAM
converted from ROM,
Commodore

Random numbers
see games, guessing;
tables, multiplication

READ
Dragon
Spectrum
Commodore

REPEAT... UNTIL,
Acorn

ROM graphics

	

38-45 	Acorn

	

44 	Commodore
Dragon

	

8-15 	Spectrum

	

46-47 	converted from RAM,

	

28 	Commodore
RUN/STOP, Commodore
RVS, Commodore

19

11,23
15,23
13,23
10,23

64
62
	Tables, multiplication

46
	Teletext graphics, BBC

35
	Terminating numbers

35-36

8
4,7,11

7
	

Variables
4
	

VDU statements
13
	

VERIFY command

47
35,36

26-32

46-53

33-37

60-64
2-7

38,41,44,45
35

7

24

64
26-27
11,42
26-27

14,27
10

8
42
63

3,27

28-29
54,55-58

3-5

2-3
2-3

54-55

22-25

28-29
30-31,59
26-27,59

31-32

40

25,46

44
2-7

40
44

43-44

36

28-29
31

26-27
31-32

37,44
7

30

5-7
28
34

41-42
40-41

44

42-43
43-44
40-41

44
8

11
13

8-9

3-5
28-29,42

24

SAVE 	 11,15,22-25,48
SCREEN, Dragon 	 40
Sprite, definition and use

of, Commodore 	 14-15
STEP 	 17,21
STOP 	 64

Spectrum 	 7
String variables

see variables
Subroutine 	 62-63
Symbols, arithmetic 	6

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and written material
should be accompanied by a stamped, self-addressed envelope.

AMAZE GAMES have a long pedigree
amongst computer owners. We show you how
mazes are created — and how to make your
own 'eater' to travel round the labyrinth

QGet started on some screen art by mastering
your computer's PLOT and DRAW
commands...

JLearn how to use your DATA FILING
system fully, with routines for searching,
amending and saving your records

JStart to learn about assembly language and
machine code, the fast, accurate LOW-
LEVEL LANGUAGES that bypass BASIC

Add another graphic character to your
repertoire, with a simple routine to create a
moving, FIRE-BREATHING DRAGON

JSort out your BASIC programs by
understanding more about VARIABLES, the
baffling Xs and Ys that hold the information

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

